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a b s t r a c t

In this paper, we investigate the dynamics of a discrete-time stage-structured popu-
lation model where juveniles and adults may be subject to threshold harvesting. This
management policy allows the harvesting of the target population only if its size exceeds
a predetermined threshold. It is commonly used for maintaining biomass, obtaining
a higher yield, and preventing population collapse. We focus on the response of the
structured populations to harvesting and study how they can be affected by considering
different thresholds for each age class. We find all possible equilibria of the system
and analyze their stability; we show that harvesting does not destabilize globally stable
equilibria. We discuss when hydra effects may occur, more specifically, we determine
when the adult population size can increase at equilibrium in response to an increase
in its per-capita mortality rate as a consequence of threshold harvesting. A rigorous
2-parameter bifurcation diagram is given for semelparous populations, which helps to
understand the general case when adult survivorship rates are low. Numerical results
complement the bifurcation analysis in the general case.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This work is concerned with the study of biologically motivated discrete-time model arising in ecology when
opulations are subject to human management, aimed at exploitation (e.g., hunting, fishing), conservation of endangered
pecies, or control of nuisance species. These models are popular objects of research in population management and
hey provide insight into the mechanisms of conservation of threatened species and eradication of invasive species. The
ommon thread is a predetermined threshold which guarantees either that exploitation rates at low stock sizes is reduced
r completely eliminated, or that pest control is activated when an environmental or economic injury level is exceeded.
hese considerations lead to the study of threshold harvesting rules [1,2]. Roughly speaking, these rules establish a
hreshold biomass below which no harvest/control is permitted. As pointed out in [3], ‘‘thresholds are a necessary feature
f any harvesting strategy with the objective of minimizing risks of resource depletion or extinction while optimizing yields in
ariable environments’’.
Recently, different forms of threshold harvesting (TH, for short) have been studied in the framework of one-dimensional

iscrete models [4–8], revealing a rich dynamics due to both smooth and border-collision bifurcations typical of piecewise-
mooth maps [9,10]. In this paper, by TH we understand that the total population (or the population of a particular stage)
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above a given threshold is removed every year; see [6, Table 1] for a collection of other names and contexts where
threshold harvesting has appeared in the literature. In particular, a typical name is fixed escapement, and this fishery
olicy is frequently used in Pacific salmon management [11, p. 440]. See [1,2] for more examples of fisheries jurisdictions
hat have adopted some form of threshold harvest control rule. The utility of fixed escapement harvesting policies has
een also supported by experimental results (see, e.g., [12]).
Knowing the response (both qualitative and quantitative) of populations to harvesting is crucial, and an impor-

ant question is the way in which harvesting affects population abundance and stability, which could be sometimes
ounterintuitive.
In the absence of harvesting, the dynamics of a single-species population without migration whose changes are due

o birth and death can be described by the first-order difference equation

xn+1 = f (xn), (1.1)

or an initial value x0 > 0, where the map f is the stock-recruitment function [11]. If, instead, the population is managed
y a TH policy, then the population dynamics is governed by the recurrence

xn+1 = ψ(xn) := min{f (xn), T } =

{
f (xn) if f (xn) ≤ T ;
T if f (xn) > T ;

(1.2)

here T > 0 is the threshold. Eq. (1.2) assumes that harvesting occurs after reproduction, or, more properly, population
tock at the generation n + 1 is measured after harvesting (see [13] for further discussions on the order of events in
iscrete-time population models with only two processes: reproduction and harvesting). TH models are typically managed
y a flat-topped map ψ; we refer to [14,15] and the discussion in [6] for some dynamical aspects of recurrences in this
ramework.

As far as we know, an analytical study of threshold rules has not been addressed in the context of discrete-time
tage-structured models, although some numerical results can be found in [16]. Studying how harvesting influences the
ynamics of structured populations is especially important because empirical evidence suggests that stage-specific forms
f control or harvesting can lead to unexpected outcomes [17–19]. One of these outcomes is known as the hydra effect,
hich is when a population increases in response to an increase in its per-capita mortality rate [20] (see also [18] and

ts references, for recent discussions). In threshold harvesting models, it is interesting to look for hydra effects when
he threshold becomes smaller since it results in an increase of harvest intensity (and hence in mortality). In a structured
opulation model involving juveniles and adults, the possibility of hydra effects in adult population was rigorously studied
n [21] when proportional harvesting (PH, for short) is used. PH means that a fixed percentage of the juvenile or the adult
opulation, or both, is harvested every year. In this work, by implementing a TH strategy instead of a PH one, we find
ecessary and sufficient conditions for hydra effects for the same stage-structured model.
Another possible effect of harvesting rules is the destabilization of a stable equilibrium which leads to population

ycling or chaos. For recent related results concerning one-dimensional maps, we refer to [22] (and references therein).
e also recall that TH in one-dimensional maps has a stabilizing effect, namely a globally stable equilibrium cannot be
estabilized when harvest intensity is increased by decreasing the threshold (see [6]). Using an enveloping technique
or difference equations due to El-Morshedy and Jiménez López [23], we prove in Section 3 that the robust stability
roperties of TH remain valid for the considered family of stage-structured population models. This is in contrast with
he results obtained in [19,21] concerning stage-structured populations subject to PH. In fact, increasing harvest intensity
y decreasing any of the thresholds (in juvenile or adult populations) cannot destabilize a stable population in our model.
At last, it is worth noticing that TH can induce unusual bifurcations, like the so-called border-collision bifurcations

BCB, for short). This phenomenon has been observed for one-dimensional maps resulting from different harvest control
ules [8]. We notice that, when two age classes are considered, the harvesting model is represented by a second-
rder difference equation (see (2.3)), which makes the bifurcation study more complicated than in the first-order case.
e perform a bifurcation analysis for a case study of semelparous populations (i.e., when adults do not survive the

eproductive season) showing the occurrence of BCBs for a related first-order difference equation, and then we use it
or the second-order equation. Finally, we give some insight into the role of adult survivorship rates, which are generally
tabilizing, as noticed in related models [24,25].
The paper is organized as follows. In Section 2, we describe the stage-structured model subject to a TH strategy. In

ection 3, we discuss the existence of equilibria and their stability. In Section 4, we investigate hydra effect phenomena. In
ection 5, we explore the global dynamics of the semelparous and iteroparous population through a bifurcation analysis
hich includes both 1-parameter and 2-parameter bifurcation diagrams. In Section 6, we conclude our study with a
iscussion.

. Stage-structured model with threshold harvesting

In this section, we introduce the stage-structured model managed by threshold harvesting we are dealing with. The
nterested reader can find different models and many applications for structured populations in [26].

Looking at populations with two age classes, let An and Jn be respectively the population size of adults and juveniles
t generation n = 0, 1, . . . The survivorship rate of the adult class is denoted by sa and the one of the juvenile by sj, with
∈ (0, 1] and s ∈ [0, 1).
j a
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As a stock-recruitment function, we consider a map f such that:

H1) f : [0,+∞) → [0,+∞) is continuous, has a unique positive fixed point f (1) = 1, f (x) > x for every x ∈ (0, 1), and
< f (x) < x for every x ∈ (1,+∞).

Notice that conditions in (H1) are typical of population models without Allee effect where, without loss of generality,
ne can consider a normalized model with positive equilibrium at x = 1. For a list of stock-recruitment functions
sed in fisheries and satisfying (H1) (corresponding to compensatory and overcompensatory population models), see
11, Chapter 3]. A prototypical example is given by the scaled exponential Ricker-type nonlinearity

f (x) = xer(1−x), (2.1)

here r > 0 is the growth rate parameter (see [27]).
We denote the population sizes of juveniles and adults after harvesting by hj(J) and ha(A), respectively. Following

19,21], the model is defined by the following system:{
An+1 = saha(An) + sjhj(Jn),
Jn+1 = f (ha(An)).

(2.2)

Notice that the planar system (2.2) can be equivalently written as the second-order difference equation

An+1 = saha(An) + sjhj(f (ha(An−1))), (2.3)

ith initial conditions A0 > 0, A1 > 0.
In this paper we assume sj = 1 − sa, which is one of the scenarios considered by Zipkin et al. [19] and Liz and

ilarczyk [21]. It encapsulates situations in which juvenile and adult survivals trade off such that one is low when the
ther is high, or when both are equally intermediate. Other scenarios are of course possible, but are not the subject of
his work.

Thus, throughout our analysis, we restrict to consider the survivorship rate of adults sa = α and the corresponding
urvivorship rate of juveniles sj = 1 − α. Results are thus given for the equation

An+1 = α ha(An) + (1 − α)hj (f (ha(An−1))) , (2.4)

epending on the real parameter α ∈ [0, 1).
Assuming that populations of juveniles and adults are managed by threshold harvesting, and denoting by Tj and Ta the

hresholds for juveniles and adults, respectively, we consider three possibilities:

(JH) Juvenile-only harvest (ha(x) = x, hj(x) = min{x, Tj}):

An+1 = αAn + (1 − α) min{f (An−1), Tj} . (2.5)

(AH) Adult-only harvest (hj(x) = x, ha(x) = min{x, Ta}):

An+1 = αmin{An, Ta} + (1 − α) f (min{An−1, Ta}) . (2.6)

(BH) Both age classes are harvested (hj(x) = min{x, Tj}, ha(x) = min{x, Ta}):

An+1 = αmin{An, Ta} + (1 − α) min
{
Tj, f (min{An−1, Ta})

}
. (2.7)

We use the acronyms (JH), (AH) and (BH) in the paper to make clear which strategy is being considered.

3. Equilibria and stability results

The following results concern the equilibria of the general case (BH), and in particular those of (JH) and (AH).

Proposition 3.1. Assume (H1). Then model (BH) given by (2.7) has a unique positive equilibrium p, which is:

(i) p = 1, if 1 ≤ min{Ta, Tj};
(ii) p = Tj, if Tj ≤ min{Ta, 1};
(iii) p = αTa + (1 − α)min{Tj, f (Ta)}, if Ta ≤ min{Tj, 1}.

Proof. It is clear that p is an equilibrium of (2.7) if and only if

p = αmin{p, Ta} + (1 − α) min
{
Tj, f (min{p, Ta})

}
. (3.1)

We distinguish two cases: p ≤ Ta and p > Ta.

Case 1: If p ≤ Ta, then (3.1) becomes

p = αp + (1 − α) min
{
T , f (p)

}
,
j
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which, since α < 1, is equivalent to

p = min
{
Tj, f (p)

}
.

This equation has a solution p ≤ Ta if and only if p = 1 ≤ min{Ta, Tj} or p = Tj ≤ min{Ta, 1}. Hence, statements (i) and (ii)
are proved.

Case 2: If p > Ta, then (3.1) becomes

p = αTa + (1 − α) min
{
Tj, f (Ta)

}
.

Accordingly, there exists a solution p ≥ Ta if and only if Ta ≤ min{Tj, f (Ta)}. By (H1), Ta ≤ f (Ta) holds if and only if Ta ≤ 1,
and therefore a solution p ≥ Ta exists if and only if Ta ≤ min{Tj, 1}; leading to (iii). □

In the particular cases when only one of the age classes is targeted, we have the following corollaries. Notice that in
case of juvenile-only harvest, we can assume that Ta is large enough so that Ta > max{Tj, 1}, and in case of adult-only
harvest, we can assume that Tj is large enough so that Tj > max{Ta, 1, f (Ta)}.

Corollary 3.2. Assume (H1). Then model (JH) given by (2.5) has a unique positive equilibrium p, which is:

(i) p = 1, if Tj ≥ 1;
(ii) p = Tj, if Tj ≤ 1.

Corollary 3.3. Assume (H1). Then model (AH) given by (2.6) has a unique positive equilibrium p, which is:

(i) p = 1, if Ta ≥ 1;
(ii) p = αTa + (1 − α)f (Ta), if Ta ≤ 1.

Next, we investigate equilibria stability properties of Eqs. (2.5)–(2.7). For it, we introduce the auxiliary second-order
difference equation

xn+1 = g(xn−1, xn), (3.2)

where g : (0,+∞) × (0,+∞) → [0,+∞) is a continuous map.
We say that a positive equilibrium p of (3.2) is a stable attractor (briefly, LAS) if for every neighborhood U of p there

is a neighborhood V of p such that every solution (xn)n∈N is included in U and

lim
n→∞

xn = p, (3.3)

provided that {x0, x1} ⊂ V . Moreover, we say that a stable attractor p is a globally stable attractor (briefly, GAS) if (3.3)
holds for all solutions (xn)n∈N of (3.2) with positive initial conditions (x0, x1).

We now recall a useful result that provides sufficient conditions for equilibria of (3.2) to be globally attracting
(cf., [23, Theorem C]). In our framework, we can state it as follows.

Theorem 3.4 ([23]). Assume that there exists a continuous map ϕ : (0,+∞) → (0,+∞) satisfying:

NF) negative feedback condition, i.e., there is p > 0 such that (ϕ(x) − x)(x − p) < 0 for all x ̸= p;
DC) dominance condition, i.e., if g(u0, u1) ≥ max{u0, u1} (resp., g(u0, u1) ≤ min{u0, u1}), then g(u0, u1) ≤ ϕ(x) (resp.,

g(u0, u1) ≥ ϕ(x)) for some x in I := [min{u0, u1},max{u0, u1}].

If p is a global attractor of

xn+1 = h(xn), (3.4)

then p is a globally stable attractor of (3.2).

For its proof we refer to [23, Theorem C]. Next we state and prove our main result on global stability. It essentially
establishes that if the threshold is set at a population level below the positive equilibrium of the unharvested adult
population, then the exploited population tends to a positive equilibrium for any initial population sizes, no matter
whether the unharvested population is stable or not. Hence, this form of threshold harvesting has a clear stabilizing
effect.

Here and later in the paper we employ the usual notation for the second iteration of a one-dimensional map f , that
is, f 2(x) := f (f (x)).

Theorem 3.5. Assume (H1). Then the following hold.

(i) If Tj ≤ 1, then p = Tj is a globally stable attractor of (JH).
(ii) If T ≤ 1, then p = αT + (1 − α)f (T ) is a globally stable attractor of (AH).
a a a
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(iii) If Ta ≤ 1, then p = α Ta + (1 − α)min{Tj, f (Ta)} is a globally stable attractor of (BH) for every fixed Tj ≥ Ta.
(iv) If Tj ≤ 1, then p = Tj is a globally stable attractor of (BH) for every fixed Ta ≥ Tj.

roof. The proof of (i) follows by combining [6, Proposition 2.1] and [23, Corollary 4.3]. Indeed, thanks to
6, Proposition 2.1], we deduce that p1 = Tj is a global attractor of (1.2) provided that Tj ≤ 1; and so, from [23, Corollary
4.3], we conclude that p1 is a globally stable attractor of (2.5).

To prove (ii), we first notice that Eq. (2.6) is a particular case of Eq. (3.2) with g defined by

g(un−1, un) = αmin{un, Ta} + (1 − α)f (min{un−1, Ta}).

We then exploit Theorem 3.4 to prove that p2 = α Ta + (1 − α)f (Ta) is globally attracting. By (H1), from Ta ≤ 1, we can
infer f (Ta) ≥ Ta and hence p2 ≥ Ta. Let us define Ma := max {f (x) : x ∈ [0, Ta]} and p̃2 := α Ta + (1−α)Ma, so that we have
p̃2 ≥ p2. Next, we take the non-increasing continuous map ϕ2 : (0,+∞) → (0,+∞) defined as

ϕ2(x) =

⎧⎪⎪⎨⎪⎪⎩
p̃2, if 0 < x ≤ Ta,

p̃2 +
p2 − p̃2
p2 − Ta

(x − Ta), if Ta < x < p2,

p2, if x ≥ p2.

It is clear that the negative feedback condition (NF) of Theorem 3.4 holds for p = p2. Moreover, p2 is a global attractor of
ϕ2, since ϕ2

2 (x) = p2, for all x > 0. It thus remains to check dominance condition (DC) of Theorem 3.4. To this purpose we
divide the proof into two steps.
Step 1. If g(u0, u1) ≥ max{u0, u1}, then g(u0, u1) ≤ ϕ2(x) for some x ∈ I . We distinguish two cases:

• if u0 ≥ Ta, then, for every u1 > 0, g(u0, u1) = αmin{u1, Ta} + (1 − α)f (Ta) ≤ αTa + (1 − α)f (Ta) = p2 ≤ ϕ2(u0);
• if u0 < Ta, then, for every u1 > 0, g(u0, u1) = αmin{u1, Ta} + (1 − α)f (u0) ≤ αTa + (1 − α)Ma = p̃2 = ϕ2(u0).

hus (DC) follows in the both cases.
tep 2. If g(u0, u1) ≤ min{u0, u1}, then g(u0, u1) ≥ ϕ2(x) for some x ∈ I . We distinguish four cases:

• if min{u0, u1} ≥ Ta, then g(u0, u1) = αTa + (1 − α)f (Ta) = p2 = ϕ2(u0);
• if max{u0, u1} < Ta, then g(u0, u1) = αu1 + (1 − α)f (u0) > αu1 + (1 − α)u0 ≥ min{u0, u1};

• if u0 < Ta ≤ u1, then g(u0, u1) = αTa + (1 − α)f (u0) > αTa + (1 − α)u0 > u0;

• if u1 < Ta ≤ u0, then g(u0, u1) = αu1 + (1 − α)f (Ta) ≥ αu1 + (1 − α)Ta > u1.
otice that (DC) is proved only in the first case, since p2 ≥ Ta and so min{u0, u1} ≥ p2. In the remaining three cases, the
nequality g(u0, u1) ≤ min{u0, u1} never holds.

To prove (iii), we argue as for the proof of statement (ii). Eq. (2.7) is a particular case of Eq. (3.2) with g defined by

g(un−1, un) = αmin{un, Ta} + (1 − α) min
{
Tj, f (min{un−1, Ta})

}
. (3.5)

s for (iii), we introduce the non-increasing continuous map ϕ3 : (0,+∞) → (0,+∞) defined as follows

ϕ3(x) =

⎧⎪⎪⎨⎪⎪⎩
p̃3, if 0 < x ≤ Ta,

p̃3 +
p3 − p̃3
p3 − Ta

(x − Ta), if Ta < x < p3,

p3, if x ≥ p3,

where p3 := α Ta + (1 − α)min{Tj, f (Ta)} and p̃3 := α Ta + (1 − α)min
{
Tj,Ma

}
. Notice that p̃3 ≥ p3 ≥ Ta and ϕ2

3 (x) = p3,
for all x > 0. Moreover, we can verify conditions (NF) and (DC) of Theorem 3.4 following step-by-step the proof of
statement (ii). Hence, we obtain that p3 is a globally stable attractor of (2.7).

At last, we prove (iv). Notice that Eq. (2.7) reduces to Eq. (3.5) in this case. To apply Theorem 3.4, we define

ϕ4(x) =

{
Tj, if 0 < x ≤ Tj,
min{Tj, f (min{x, Ta})}, if x ≥ Tj.

s in the previous cases, it is clear that the negative feedback condition (NF) of Theorem 3.4 holds for p = Tj. Moreover, Tj
s a global attractor of ϕ4, since ϕ2

4 (x) = Tj, for all x > 0. It thus remains to check dominance condition (DC) of Theorem 3.4.
We divide the proof into two steps.
Step 1. If g(u0, u1) ≥ max{u0, u1}, then g(u0, u1) ≤ ϕ4(x) for some x ∈ I . We distinguish three cases:

• if u1 > Tj, then, g(u0, u1) = αmin{u1, Ta} + (1 − α)min{Tj, f (min{u0, Ta})} ≤ αu1 + (1 − α)Tj < u1;

• if u1 ≤ Tj and u0 ≤ Tj, then, g(u0, u1) ≤ αu1 + (1 − α)Tj ≤ Tj = ϕ4(u1);
• if u1 ≤ Tj and u0 > Tj, then, g(u0, u1) = αu1 + (1 − α)ϕ4(u0), and therefore g(u0, u1) ≥ max{u0, u1} ≥ u1 implies

that g(u0, u1) ≤ ϕ4(u0).

n the first case, the inequality g(u , u ) ≥ max{u , u } never holds.
0 1 0 1
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Step 2. If g(u0, u1) ≤ min{u0, u1}, then g(u0, u1) ≥ ϕ4(x) for some x ∈ I . We distinguish four cases:

• if u0 < Tj and u1 < Ta, then, g(u0, u1) = αu1 + (1 − α)min{Tj, f (u0)} > αu1 + (1 − α)u0 ≥ min{u0, u1};

• if u0 < Tj and u1 ≥ Ta, then, g(u0, u1) = αTa + (1 − α)min{Tj, f (u0)} > αTa + (1 − α)u0 ≥ u0;

• if u0 ≥ Tj and u1 ≥ Tj, then, g(u0, u1) = αmin{u1, Ta} + (1 − α)ϕ4(u0) ≥ αTj + (1 − α)ϕ4(u0) ≥ ϕ4(u0);
• if u0 ≥ Tj and u1 < Tj, then, g(u0, u1) = αu1 + (1 − α)ϕ4(u0), and so, if g(u0, u1) ≤ min{u0, u1} ≤ u1, then

g(u0, u1) ≥ ϕ4(u0).

otice that the inequality g(u0, u1) ≤ min{u0, u1} never holds in the first two cases of this step, and (DC) follows in the
thers. The proof is thus completed. □

In Theorem 3.5, we proved that (BH) has a globally stable attractor if min{Ta, Tj} ≤ 1. In the remaining case, that is,
f min{Ta, Tj} > 1, we know by Proposition 3.1 that p = 1 is the unique positive equilibrium. Our next result shows
hat if 1 is a global attractor of (1.1), then it is a globally stable attractor of (BH). This generalizes analogous results for
ne-dimensional models with different forms of threshold harvesting (see [6, Proposition 2.2], [5, Proposition A.3], and
8, Theorem 2]).

heorem 3.6. Assume (H1). If min{Ta, Tj} > 1, then p = 1 is the unique positive equilibrium of (2.7). Moreover, if p is a
lobal attractor of (1.1), then p is a globally stable attractor of (2.7).

To prove our next theorem, we are going to use [23, Lemma 2.5 and Theorem B], which we state here below (adapted
o our situation for convenience of the reader).

emma 3.7 ([23]). Assume that there exists a continuous map h : (0,+∞) → (0,+∞). If p is a global attractor of (3.4), then
here are no distinct points c, d ∈ (0,+∞) satisfying h(c) ≥ max{c, d} and h(d) ≤ min{c, d}.

heorem 3.8 ([23]). Assume that p is a globally stable attractor of (1.1) where f : (0,+∞) → (0,+∞) is a continuous map.
uppose there exists a continuous map h : (0,+∞) → (0,+∞) satisfying x < h(x) ≤ max{f (x), p} (resp., x > h(x) ≥

in{f (x), p}) for every x < p (resp., for every x > p). Then p is a globally stable attractor of (3.4).

roof of Theorem 3.6. We use again Theorem 3.4 and so we consider the non-increasing continuous map ϕ5 : (0,+∞) →

0,+∞) defined as ϕ5(x) = min
{
Tj, f (min{x, Ta})

}
.

It is clear that the negative feedback condition (NF) of Theorem 3.4 holds for p = 1. We claim that p is a global attractor
f xn+1 = ϕ5(xn). To this aim, we distinguish two cases:

• If f (Ta) ≥ 1, then x < ϕ5(x) ≤ max{f (x), 1} for all x ∈ (0, 1) and x > ϕ5(x) ≥ min{f (x), 1} for all x > 1; that is, ϕ5 is
dominated by f . Thus, by Theorem 3.8, the claim is proved.

• If f (Ta) < 1, then we can write

ϕ5(x) =

{
min

{
Tj, f (x)

}
, if x ≤ Ta;

f (Ta), if x ≥ Ta.

Since ϕ5 is not necessarily dominated by f for x > Ta, we consider the auxiliary function

ϕa(x) =

{
min

{
Tj, f (x)

}
, if x ≤ Ta;

f (x), if x ≥ Ta.

It is easy to check that ϕa is dominated by f in the sense of Theorem 3.8. Thus, p = 1 is a globally stable attractor
of xn+1 = ϕa(xn). In particular, this equation does not have 2-periodic points other than p; moreover, by Lemma 3.7,
ϕ2
a (Ta) < Ta (take d = Ta, c = ϕa(Ta) in the lemma). Hence, since ϕ2

5 (Ta) = ϕ2
a (Ta) < Ta, it follows that ϕ2

5 (x) < x for
all x > Ta. Therefore, ϕ5 cannot have 2-periodic points different from p, and so the claim is proved also in this case
(see, e.g., [28, Proposition 1]).

It remains to check dominance condition (DC) of Theorem 3.4. We divide the proof into two steps. Recall that

g(u0, u1) = αmin{u1, Ta} + (1 − α) min
{
Tj, f (min{u0, Ta})

}
.

tep 1. If g(u0, u1) ≥ max{u0, u1}, then g(u0, u1) ≤ h(x) for some x ∈ I = [min{u0, u1},max{u0, u1}]. Indeed, u1 ≤

(u0, u1) ≤ αu1 + (1 − α)h(u0) implies that h(u0) ≥ g(u0, u1).
tep 2. If g(u0, u1) ≤ min{u0, u1}, then g(u0, u1) ≥ h(x) for some x ∈ I . We distinguish three cases:

• if u1 ≤ Ta, then u1 ≥ g(u0, u1) = αu1 + (1 − α)h(u0), which implies h(u0) ≤ g(u0, u1);
• if g(u0, u1) ≤ Ta < u1, then Ta ≥ g(u0, u1) = αTa + (1 − α)h(u0) which implies h(u0) ≤ g(u0, u1):
• finally, we show that Ta < g(u0, u1) ≤ min{u0, u1} is not possible; indeed, if Ta < min{u0, u1}, then

h(u0) = min
{
Tj, f (Ta)

}
≤ f (Ta) < Ta H⇒ g(u0, u1) = αTa + (1 − α)h(u0) < Ta,
a contradiction. □

6
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Remark 3.9. Let f be the Ricker map defined in (2.1). It is well known that p = 1 is a global attractor of (1.1) if r ≤ 2.
ence, in this case, by an application of Theorems 3.5 and 3.6, it follows that (BH) has always a globally stable attractor
> 0, that can be p = 1, p = Tj, or p = αTa + (1 − α)min{Tj, f (Ta)}.

4. Hydra effects

In this section, we are interested in hydra effects for adult population of (2.3) and only in the case of stable populations.
They thus occur when a stable positive equilibrium increases as a result of decreasing the thresholds. It is well known
that, for population models with overcompensatory density-dependent regulation (e.g., with the Ricker map (2.1)), hydra
effects are often observed if recruits (juveniles) are censused, but are hidden when parent stock (adults) is measured (for
more discussions, see [13]). For this reason, we focus our study on hydra effects for the adult population. Moreover, we
think that this is the most interesting case from the perspective of fisheries, which usually are focused on adult population
stock.

The existence of hydra effects in the adult population has been investigated in [19,21] when proportional harvesting is
applied to (2.3), namely ha(x) = (1−γa)x and hj(x) = (1−γj)x, with γa and γj in [0, 1]. In particular, for overcompensatory
models, hydra effects were observed in the case of adult-only harvesting, but not when only juveniles are harvested or
both stages are harvested in equal proportion. On the contrary, for compensatory maps (e.g., with the Beverton–Holt map
f (x) = k1x/(1 + k2x), k1, k2 > 0) hydra effects were not possible.

We now show that analogous conclusions hold in our models with threshold harvesting. From Proposition 3.1, it is
clear that hydra effects are not possible if f is increasing, that is, for compensatory models. Thus, in this section, we
consider overcompensatory models by assuming that f is unimodal with one local extremum point in (0, 1). Indeed, if
this point exceeds the value 1, then one can show that the equilibrium of the adult population keeps increasing as the
threshold parameter Ta increases, so hydra effects never occur as for compensatory models. It is also clear from a biological
point of view that a hydra effect in adults does not make sense when only juveniles are harvested (mathematically,
this is also clear from Corollary 3.2). We thus investigate the impact of threshold harvesting on the hydra effects on
the adult population when only adults are harvested, and when both age classes are harvested, considering different
thresholds for each stage. The hypotheses required in our next result are typical for the usual discrete maps employed in
overcompensatory population models, including the Ricker map, the quadratic map, and the generalized Beverton–Holt
map f (x) = ax/(1 + (a − 1)xm), a > 1, m > 1.

Theorem 4.1. Assume (H1). Suppose that f is of class C2 and has a unique critical point xc ∈ (0, 1) such that f ′(x) > 0
and f ′′(x) < 0 for every x ∈ (0, xc), and f ′(x) < 0 for every x ∈ (xc,+∞). Moreover, f has at most one inflection point
xm ∈ (xc,∞). Then the following hold.

(i) A hydra effect as Ta decreases from Ta = 1 to Ta = 0 occurs in (AH) if and only if α < α∗

1 where the constant
α∗

1 = α∗

1 (f ) ∈ (0, 1).
(ii) A hydra effect as Ta decreases from Ta = 1 to Ta = 0 occurs in (BH) if and only if Tj > 1 and α < α∗

2 where the constant
α∗

2 = α∗

2 (f , Tj) ∈ (0, 1).

In both cases, a hydra effect cannot occur as Ta decreases while Ta ≥ 1. In (ii), a hydra effect cannot occur as Tj decreases for
any fixed value of Ta.

Proof. As for statement (i), we use Corollary 3.3 and deal with (2.6). Indeed, we notice that a hydra effect can only occur
if Ta < 1, since the equilibrium is constant for Ta ≥ 1. In this case, the positive equilibrium is p = αTa + (1 − α)f (Ta)
and so we stress that a hydra effect may exist only if f is decreasing in Ta (otherwise, the equilibrium is an increasing
function of Ta). We thus investigate the monotonicity of the function F (x) := αx + (1 − α)f (x) in the interval [0, 1]; by
claiming that there exists x̄ ∈ (0, 1] such that

F ′(x̄) < 0. (4.1)

Since f ′(x) ≥ 0 for every x ∈ [0, xc], we can infer that x̄ (if it exists) has to belong to (xc, 1]. The function F ′ attains its
global minimum over (xc, 1] at x̄ = 1 (if xm ≥ 1) or at x̄ = xm (if xm < 1). Then, by defining

α∗

1 = α∗

1 (f ) :=

⎧⎪⎪⎨⎪⎪⎩
−f ′(1)

1 − f ′(1)
, if xm ≥ 1;

−f ′(xm)
1 − f ′(xm)

, otherwise;
(4.2)

e obtain that (4.1) holds if and only if α < α∗

1 and so the statement is proved.
To prove statement (ii), we use Proposition 3.1 and deal with (2.7). Therefore, a hydra effect can only occur if

a < min{Tj, 1}. In this case, the positive equilibrium is

p = αTa + (1 − α)min{Tj, f (Ta)} =

{
αTa + (1 − α)Tj, if Tj ≤ f (Ta);

αTa + (1 − α)f (Ta), if Tj > f (Ta).

7
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Fig. 1. Positive equilibrium for (AH) with f (x) = xer(1−x) . From the right to the left, red dashed lines correspond to Ta = 1 and Ta = νj , where νj
are the solutions of F ′(Ta) = 0 in (0, 1) and F (x) = αx + (1 − α)f (x). (A): r = 1.75, α = 0.2 < (r − 1)/r = 3/7; a hydra effect occurs as Ta decreases
from Ta = 1 to Ta = ν1 ≈ 0.648; (B): r = 3, α = 0.7, with (r − 1)/r = 2/3 < α < er−2/

(
1 + er−2

)
≈ 0.731; a hydra effect occurs as Ta decreases

from Ta = ν2 ≈ 0.886 to Ta = ν1 ≈ 0.514.

It thus follows that a hydra effect is only possible if Tj > f (Ta) and there is x̄ ∈ (0, 1] satisfying (4.1). To this purpose, we
notice that for every Tj ∈ (0, f (xc)) there are β1 ∈ (0, xc) and β2 ∈ (xc,+∞) such that Tj = f (β1) = f (β2). Then, no hydra
effect occur when Tj = f (β2) < 1 (or equivalently β2 > 1) since the equilibrium is an increasing function of Ta. On the
other hand, when Tj = f (β2) > 1, we define

α∗

2 = α∗

2 (f , Tj) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−f ′(1)
1 − f ′(1)

, if xm ≥ 1;

−f ′(xm)
1 − f ′(xm)

, if β2 ≤ xm < 1;

−f ′(β2)
1 − f ′(β2)

, if xm < β2 < 1.

(4.3)

imilarly to the previous case, we have that (4.1) holds if and only if α < α∗

2 .
The proof of Theorem 4.1 is thus completed. □

emark 4.2. It is easy to check that α∗

2 = α∗

2 (f , Tj) is a nonincreasing function of Tj. Hence, since α∗

1 = α∗

1 (f ) can be seen
as α∗

2 (f ,∞), we can affirm that α∗

1 ≥ α∗

2 .

In Theorem 4.1, we proved that when only adults are harvested may give rise to a hydra effect in the adult population
in (AH). As for the general case (BH), we show that a hydra effect in the adult population can occur provided that
0 < Ta < 1 < Tj, that is, if juveniles are more protected than adults. It is worth mentioning that it was shown that
hydra effects do not occur in (2.2) if proportional harvesting is applied with the same harvesting rates in juveniles and
adults [21, Proposition 2.5]. The same occurs for threshold harvesting, but our results show that hydra effects are still
possible if both age classes are targeted, but harvesting intensity is greater for adult population.

Example 4.3. Let f be the Ricker map defined in (2.1). In this case, we can make explicit computations of the threshold
values α∗

1 and α∗

2 defined in (4.2) and (4.3), respectively. We first observe that the map x ↦→ −f ′(x)/
(
1 − f ′(x)

)
is a

strictly decreasing function in [0, 1] if and only if 2/r ≥ 1, otherwise it has there a local minimum at xm = 2/r . Then,
from Theorem 4.1 and by considering the Lambert function W−1 : [−1/e, 0) → (−∞,−1], which is the lower branch of
the inverse of φ(x) = xex, we have the following cases:

• α < α∗

1 if and only if either 1 < r ≤ 2 and α <
r − 1
r

, or r > 2 and α <
er−2

1 + er−2 .

• α < α∗

2 if and only if either 1 < r ≤ 2 and α <
r − 1
r

, or r > 2/β2 and α <
−f ′(β2)

1 − f ′(β2)
, or 2 < r ≤ 2/β2 and

α <
er−2

1 + er−2 , where β2 =
−1
r

W−1(−Tjre−r ).

See Figs. 1 and 2 for some numerical simulations and a graphical representation of these cases. In Fig. 1, we show two
panels, illustrating the two different possibilities for α∗: panel (A) corresponds to the case 1 < r ≤ 2 (x ≥ 1), and panel
1 m

8
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Fig. 2. Positive equilibrium for (BH) with f (x) = xe2.6(1−x) . From the left to the right, red dashed lines correspond to Ta = β1 and Ta = β2 , while
lack dashed lines correspond to Ta = xm = 2/r < 1 (panels (A) and (B)) and Ta = 1 (all panels). (A): Tj = 1.2, where xm < β2 < 1; a hydra effect
ccurs for α = 0.3 < −f ′(β2)/

(
1 − f ′(β2)

)
≈ 0.63 as Ta decreases from 1 to β2; (B): Tj = 1.7, where β2 < xm < 1; a hydra effect as Ta decreases

from 1 to β2 occurs for α = 0.5 < α∗

2 = e0.6/(1 + e0.6) ≈ 0.64; (C): Tj = 1.7 and α = 0.7 > α∗

2 , hence the equilibrium always decreases as Ta
ecreases from 1 to 0.

B) corresponds to the case r > 2 (xm < 1). In Fig. 2, we illustrate the second and third cases of α∗

2 , and one situation
here hydra effect does not occur.

. Bifurcation analysis

To understand the dynamics of models (JH), (AH) and (BH) when the positive equilibrium is unstable in presence
f harvesting, we discuss the case of semelparous and iteroparous populations separately. Moreover, for the sake of
xposition, we consider, in the following, the Ricker map (2.1) as stock-recruitment function and observe that results
an be generalized to other smooth unimodal maps.

.1. Semelparous case: the role of harvesting thresholds

When the population is semelparous, the individuals have only one reproductive event before death, and so α = 0. This
eads us to deal with models described through a second-order difference equation An+1 = g(An−1), which is a particular
case of (3.2). As observed in [29,30], the dynamics of this kind of equation depend on the dynamics of an associated
one-dimensional equation An+1 = g(An) that is the core of the investigations in this section. For (2.5), we consider the
equation

An+1 = min{f (An), Tj} =: g1(An), (5.1)

which corresponds to the threshold harvesting (TH) model studied in [6]. For (2.6), we consider the equation

An+1 = f (min{An, Ta}) =: g2(An), (5.2)

which is dynamically equivalent to (2.6), but with different census timing [13, Section 5]. From Fig. 3, we observe that
the maps g1 and g2 are piecewise smooth maps with one flat interval each one which has a stabilizing effect (see [6]).

On the other hand, for (2.7), we take the equation

An+1 = min
{
Tj, f (min{An, Ta})

}
=: g3(An), (5.3)

here the piecewise smooth map g3 has typically two flat intervals as depicted in Fig. 3. In fact, g3 can be written in an
xtended form as follows:

g3(x) =

⎧⎨⎩
f (x), if x ≤ Ta and f (x) ≤ Tj;
f (Ta), if x > Ta and f (Ta) < Tj;
Tj, otherwise.

(5.4)

t is worth noticing that Eq. (5.3) has an independent interest as a one-dimensional harvesting model generalizing the
wo threshold harvesting models (5.1) and (5.2). We can interpret it in the following way: before reproduction, we apply
9



E. Liz and E. Sovrano Communications in Nonlinear Science and Numerical Simulation 109 (2022) 106280

r
(

t
h

Fig. 3. One-dimensional maps defining the different harvest strategies in the semelparous case. Here, the map f (x) = xe2.6(1−x) is represented with a
ed dashed line in the intervals where it does not coincide with the map gi , i = 1, 2, 3 (blue solid line). (A): map g1 defined in (5.1) with Tj = 1.3;
B): map g2 defined in (5.2) with Ta = 1.5, f (Ta) ≈ 0.408; (C): map g3 defined in (5.3) with Ta = 1.5, Tj = 1.3.

hreshold harvesting to the population with the threshold Ta, then reproduction occurs and we apply again threshold
arvesting with the threshold Tj, as the following scheme shows

An

TH (Ta)
−−−−−→ A′

n = min{An, Ta}
Rep.

−−−−−→ f (A′
n)

TH (Tj)
−−−−−→ An+1 = min{f (A′

n), Tj}

We now perform a bifurcation analysis of (5.3). To this purpose, we follow [10] for notations and results involving
piecewise-smooth maps. We thus call break points the points where g3 is not differentiable. Moreover, a fixed point of g3
is called admissible fixed point; whereas a virtual fixed point is a fixed point of one of the smooth maps defining g3 but
not a fixed point of g3. For example, Tj and f (Ta) are either virtual or admissible fixed points of g3. Indeed, according to
Proposition 3.1, Tj is admissible if and only if either Tj ≤ 1 ≤ Ta, or Ta < 1 and Tj ≤ f (Ta). Instead, f (Ta) is admissible if
and only if Ta ≤ 1 and Tj ≥ f (Ta). Finally, the positive fixed point p = 1 of f is admissible if and only if 1 ≤ min{Ta, Tj}.

Here, by varying the threshold parameter Tj or Ta in Eq. (5.3), we are interested in studying when a virtual/admissible
fixed point or a cycle collides with a break point, and this collision leads to a qualitative change in the dynamics. This
phenomena is called border-collision bifurcations (BCB, for short). There are two possible dynamical scenarios at a BCB
defined by a fixed point of g3:

• A persistence BCB occurs when an admissible and a virtual fixed point collide at a break point and interchange their
roles. No other periodic points are created or destroyed at the bifurcation point.

• A flip BCB or period-doubling BCB occurs when an admissible fixed point collides with a break point and a 2-periodic
orbit {q1, q2} appears, where q1 and q2 are at different sides of the break point.

We now consider the Ricker map (2.1) and point out that the conclusions for BCBs of fixed points remain valid for any
smooth unimodal map satisfying (H1) and such that f ′(1) < 0. First, we notice that, if r ≤ 2, then the positive equilibrium
p = 1 is a global attractor of f , and therefore, it is also a global attractor for the threshold methods considered in this
section if min{Ta, Tj} > 1. Indeed, for (5.1) and (5.2), this is a consequence of [6, Proposition 2.2], while for (5.3), it is a
by-product of the proof of Theorem 3.6 in this paper. Thus, for r ≤ 2, only persistence BCBs occur as either Ta or Tj are
increased. Actually, Theorem 3.6 guarantees that the same conclusion is valid for the general model (2.7).

Next, as a case study, we choose r = 2.6 in (2.1), so that the corresponding Ricker map f has a 4-periodic attractor.
It is easy to check that a persistence BCB occurs when Tj = f (Ta) and 0 < Ta < 1. The bifurcation boundary in the plane
(Ta, Tj) is represented by a blue solid line in Fig. 4.

When Tj > 1, a flip BCB occurs as Ta is increased and reaches the critical value Ta = 1. For Ta < 1, the fixed point f (Ta)
is globally attracting; at Ta = 1, it collides with a break point and becomes virtual; for Ta > 1, the attracting 2-periodic
orbit {f (Ta), f 2(Ta)} is created. In a similar way, when Ta > 1, a flip BCB occurs as Tj is increased and reaches the critical
value Tj = 1. In this case, the fixed point Tj becomes virtual and gives rise to an attracting 2-periodic orbit {Tj, f (Tj)}. Flip
BCBs are represented by red solid lines in Fig. 4.

BCBs of 2-periodic cycles occur when a fixed point of g2
3 collides with a break point. We find two persistence BCBs and

two flip BCBs of 2-periodic cycles. To this aim, let us consider

q := max{x ∈ (0,+∞) : f 2(x) = x}.

Then, {q, f (q)} is an (unstable) 2-cycle of f . Flip BCBs of 2-periodic cycles occur when either Tj > q and Ta passes the critical

value Ta = q, or Ta > q and Tj passes the critical value Tj = q. In both cases an attracting 2-cycle of g3 becomes virtual

10
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Fig. 4. In the plane (Ta, Tj), a bifurcation diagram for (5.3) with f (x) = xe2.6(1−x) . When min{Ta, Tj} ≤ 1, there is a globally attracting positive
quilibrium (Tj in the gray region and f (Ta) in the blue region); if 1 < max{Ta, Tj} and min{Ta, Tj} ≤ q ≈ 1.752, then there is a globally attracting
-cycle (white region), which is {f (Ta), f 2(Ta)} in region (a), {f (Ta), Tj} in region (b), and {f (Tj), Tj} in region (c); at last, if max{Ta, Tj} > q (magenta
egion), there is a 4-periodic attractor. We show: flip BCBs in red solid line; persistence BCBs for fixed points in blue solid line; persistence BCBs
or 2-cycles in green solid line. If Tj > M = max{f (x) : x ∈ [0, 1]} ≈ 1.905 (the region above the horizontal dashed line), then (5.3) reduces to (5.2),
nd we have the typical period-doubling bifurcation sequence of TH as Ta is increased; an analogous comment applies for Tj when Ta > q.

Fig. 5. One-parameter bifurcation diagrams for (5.3) with f (x) = xe2.6(1−x) . We use Ta as the bifurcation parameter and fix different values of Tj .
A): Tj = 1.85 > q ≈ 1.752; (B): Tj = 1.5 ∈ (1, q); (C): Tj = 0.9 < 1.

and a 4-periodic orbit is created. Persistence BCBs of 2-periodic cycles occur when 1 < Ta < q and either Tj = f 2(Ta) or
Tj = Ta. In the former case, the 2-periodic orbits {Tj, f (Ta)} and {f (Ta), f 2(Ta)} collide and interchange their roles (between
irtual and admissible 2-cycles); in the latter case, {Tj, f (Ta)} collides with {Tj, f (Tj)}. Persistence BCBs of 2-periodic cycles
re represented by green solid lines in Fig. 4.
No more flip BCBs occur. In the magenta shaded region in the right upper corner of Fig. 4, there are several persistence

CBs of 4-periodic orbits, but we skip the details. An important consequence of our analysis of the semelparous case is the
tabilizing effect of increasing harvesting (by decreasing Ta, Tj, or both). To further illustrate these effects and the BCBs,
we show some one-parameter bifurcation diagrams in Fig. 5.

From the bifurcation analysis performed for (5.3), we are now ready to deal with the second-order equation

An+1 = min
{
Tj, f (min{An−1, Ta})

}
= g3(An−1), (5.5)

hich corresponds to (2.7) with α = 0. It is easy to describe the periodic orbits of (5.5) in terms of the ones of (5.3) in
ur case study. For the general case, we refer to [29,30].

• If (5.3) has a globally attracting fixed point p, then p is also a global attractor of (5.5).
• If (5.3) has an unstable fixed point p and an attracting 2-cycle {q1, q2}, then (5.5) has an unstable fixed point p, an

attracting 4-cycle {q , q , q , q }, and another 4-cycle (saddle) {q , p, q , p}.
1 1 2 2 1 2
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Fig. 6. Bifurcation diagrams for (BH) with f (x) = xe2.6(1−x) . We use Ta as the bifurcation parameter and fix different values of α and Tj . (A): Tj = 1.85,
= 0.015; (B): Tj = 1.5, α = 0.1.

• If (5.3) has an unstable fixed point p, an unstable 2-cycle {q1, q2}, and an attracting 4-cycle {ℓ1, ℓ2, ℓ3, ℓ4}, then
(5.5) has an unstable fixed point, two unstable 4-cycles, two attracting 8-cycles and three saddles of period 8. The
attractors correspond to the initial conditions {ℓ1, ℓ1}, and {ℓ1, ℓ2}.

e call the attention to the fact that bifurcation diagrams like those in Fig. 5 do not change when we replace (5.3) by
5.5). However, we should notice that, in the latter case, a seemingly 2-periodic (resp., 4-periodic) orbit in the bifurcation
iagram actually corresponds to a 4-periodic orbit (resp., 8-periodic).

.2. Iteroparous case: the role of adult survivorship rates

Numerical experiments suggest that the configuration of periodic orbits of the semelparous case (5.5) with the Ricker
ap f (x) = xe2.6(1−x) is preserved for α small enough. For a related analytical result, see [24, Theorem 8]. As commented
efore, when we consider Eq. (5.5), we get the bifurcation diagrams shown in Fig. 5. However, the periodic attractors are
ifferent from those of the one-dimensional case; for example, in Fig. 5(B) the apparently 2-periodic orbits of the form
q1, q2} are in fact 4-periodic orbits of the form {q1, q1, q2, q2}, and a similar remark applies to 4-periodic orbits. When
> 0, the periods of the attractors are clearly observed in the bifurcation diagram. In Fig. 6, we highlight this contrast
y showing the bifurcation diagrams for positive values of α and the same choices of the parameter Tj made in Fig. 5(A)
nd (B).
The dynamics of (BH) when min{Ta, Tj} > 1 change for larger values of α, giving rise to periodic solutions with higher

eriods and smooth invariant curves. Increasing α is stabilizing in the sense that there is a critical value α0 such that
he equilibrium p = 1 of (BH) becomes asymptotically stable for α ∈ (α0, 1). Notice that the value of α0 corresponds
o a Neimark–Sacker bifurcation, and, if f is smooth and f ′(1) < −1, we have α0 =

(
f ′(1) + 1

)
/f ′(1) (see [25] for more

etails). When min{Ta, Tj} > 1 and An, An−1 are close to 1, then (2.7) becomes Clark’s equation

An+1 = αAn + (1 − α)f (An−1).

or the Ricker map, we thus get α0 = (r − 2)/(r − 1) (since f ′(1) = 1 − r).
Next, we pursue the investigations for the case study under consideration which is given by (2.1) with r = 2.6.

n Fig. 7, we show three bifurcation diagrams for (BH) with the same value of the parameter Tj, illustrating different
ransitions when Ta passes the critical value Ta = 1: for α small enough, there is a flip bifurcation from an attracting
-cycle to a globally stable fixed point, as it occurs in the semelparous case α = 0; for larger α, but smaller than α0,
e observe a Neimark–Sacker bifurcation; finally, for α > α0, there is a persistence BCB, where the fixed points 1 and
= αTa + (1 − α)f (Ta) collide.
In Fig. 8(B), we give a simple 2-parameter bifurcation diagram in the plane (Ta, α), which roughly shows the stabilizing

ole of increasing α when Ta > 1. In the shaded region, there is a rich dynamics including invariant curves and periodic
ttractors (see also Fig. 9). Numerical simulations show that, for each Ta > 1, there exists α1(Ta) such that (BH) has a
-periodic attractor if 0 < α < α1(Ta) (see Fig. 8(A)). Moreover, we define α1 := α1(1+).
Finally, another way to illustrate the role of the parameter α is showing how the attractor of the planar system (2.2)

hanges as α is increased from α = 0. In Fig. 9, we fix values for the TH of adults and juveniles and plot the attractor of (2.2)
y varying α. We consider several values of α for which different scenarios occur: a 4-periodic orbit, a 17-periodic orbit,
smooth invariant curve, and a fixed point. We emphasize that the dynamical complexity of stage-structured population
odels with density-dependent regulation has been widely studied in the literature; see, e. g., [31–35].
12
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f

Fig. 7. One-parameter bifurcation diagrams for (BH) with the Ricker map f (x) = xe2.6(1−x) and Tj = 1.6. We use Ta as the bifurcation parameter and
ix different values of α. (A): α = 0.1 < α1; (B): α = 0.3 ∈ (α1, α0); (C): α = 0.5 > α0 .

Fig. 8. Bifurcation diagrams for (BH) with f (x) = xe2.6(1−x) . In this case, α0 = (r − 2)/(r − 1) = 3/8 = 0.375. (A): 1-parameter bifurcation diagram.
We use α as the bifurcation parameter and fix Ta = 1.8, Tj = 1.6. (B): 2-parameter bifurcation diagram in the plane (Ta, α) when Tj = 1.6. We
distinguish several bifurcation boundaries: persistence bifurcation in blue solid line, Neimark–Sacker bifurcation in green solid line; flip bifurcation
(occurring for Ta = 1, 0 < α < α1 ≈ 0.213) in red solid line.

Fig. 9. Different attractors of system (2.2) in the plane (A, J), with f (x) = xe2.6(1−x) , Ta = 1.5, and Tj = 1.6: 4-periodic orbit for α = 0.1 in blue;
17-periodic orbit for α = 0.225 in red; invariant curve for α = 0.35 in green; attracting fixed point (1, 1) for α = 0.5 in black.
13
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6. Discussion

Threshold harvest control rules are considered a key component of the precautionary approach to fisheries manage-
ent [2]. Our primary aim in this paper was to extend some results recently obtained for one-dimensional single-species
opulations [4–8] to population models with age-structure. As it has been shown for other forms of harvesting, a
emographic structure can confound removal efforts and lead to undesirable consequences. This remark is especially
mportant when, instead of commercial fishing, captures are oriented to pest control, with the aim to eradicate invasive
pecies [19]. A possible effect of fishing or pest control is the so-called hydra effect, which is a form of overcompensation
s a response to increasing mortality, and it has been recently argued that this phenomenon is more likely to appear in
tage-structured models [17,18]. In this direction, our results indicate that the adult population can increase as a result of
hreshold harvesting if only adults are harvested, or both juveniles and adults are harvested. In the latter case, a necessary
ondition for a hydra effect in adult population is that juveniles can only be removed when its population is greater than
he equilibrium of the unharvested population. Moreover, we explicitly give the range of parameter values for which
ydra effects occur for the Ricker model.
Threshold strategies have also been proposed for stabilizing population dynamics. In this direction, our results in

ection 3 rigorously confirm the stabilizing effects of TH in stage-structured populations. We emphasize the use of an
nveloping technique introduced in [23] as a successful strategy to prove global stability in difference equations. Moreover,
hile analyzing the semelparous case in Section 5.1, we introduced a new threshold rule (5.3) for one-dimensional maps,
hich assumes two reference points Tj, Ta, depending on whether harvesting is applied before or after reproduction. This

rule generalizes the usual limiter control [14,15] and has certain relation with the ‘‘both limiter control’’ introduced by
Tung et al. [36]. The bifurcation analysis of this method reveals persistence and flip border-collision bifurcations (BCB),
whose analysis provides a 2-parameter bifurcation diagram (in terms of the threshold values Ta and Tj) for a case study.
Moreover, numerical simulations suggest that these bifurcations persist for the general case when adult survivorship rates
are low (see Figs. 6 and 7). Thus, we provide a new example of BCB for non-smooth second-order discrete models.

Finally, we point out that this study aims to be a first step to understand the role of age structure in population models
subject to TH. With this respect, we list possible future research directions as follows. On the one hand, we have only
considered the case when the survival rates of juveniles and adults are related by equation sj = 1 − sa. A similar study
can be made considering other possibilities; for example, the case sa = sj was studied in [19,21] for populations subject
to proportional harvesting. On the other hand, it would be interesting to investigate the effects of harvesting in stage-
structured models for other threshold strategies, such as proportional threshold harvesting [4,5], precautionary threshold
constant catch [8], or threshold constant catch [7].
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