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• We give a rigorous approach to periodic control of periodic discrete systems.
• Stability domains help to choose a suitable control for every particular application.
• Destabilizing bifurcations are prevented.
• We give applications for biological and physical models.
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a b s t r a c t

We investigate prediction based schemes to stabilize periodic solutions to potentially chaotic systems
of periodic difference equations using pulses at times being a multiple of the period. By introducing the
concept of a stability domain, we obtain precise information on the possibility to stabilize given solutions,
to avoid destabilizing bifurcations, as well as on the magnitude of the required control.
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1. Introduction

We aim to stabilize an ω1-periodic solution ξ = (ξn)n∈N0 to a
difference equation

xn+1 = fn(xn), (1.1)

where the right-hand side fn : Ω → Ω is continuously differen-
tiable and ω0-periodic, i.e. fn = fn+ω0 for all n ∈ N0, and Ω ⊆ Rd is
an open and nonempty subset. In general, this stabilization is based
on a control scheme

xn+1 = Fn(xn, un), (1.2)

with a mapping Fn : Ω × Rd
→ Ω satisfying Fn(x, 0) = fn(x). Our

approach follows two main objectives:
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• Given an unstable periodic solution ξ to (1.1) one has the goal
to find a control sequence (un)n∈N0 such that ξ becomes an
asymptotically stable solution of (1.2), even if ξ is embedded
into a possibly chaotic regime.

• More fundamentally in parameter-dependent difference equa-
tions (1.1), one tries to choose (un)n∈N0 in a way to avoid the
creation of unstable solutions generated by destabilizing bifur-
cations. This moreover allows to (numerically) continue solu-
tions over larger parameter ranges.

In addition, the control should be as ‘‘cheap’’ as possible in the
sense that the control magnitudes are small and controls are ap-
plied rarely.

This paper aims to provide a contribution to the control of chaos
and targeting, a topic that experiences a fast growth and finds
many applications in various areas, including Physics, Chemistry
and Biology [1,2]. The main strategies for stabilization of an un-
stable periodic solution are the so-called feedbackmethods, which
select the perturbation based on the knowledge of the state of the
system [3].
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We focus on non-invasive controls, i.e. consider sequences
(un)n∈N0 in Rd and mappings Fn such that ξ is also an ω1-periodic
solution to the controlled difference equation (1.2), instead of cre-
ating a newone. Awell-knownexample of thesemethods is the de-
layed feedback control (DFC), first established by Pyragas [4]. Our
approach is based on prediction-based control (PBC, or predictive
control), introduced byUshio andYamamoto [5] to overcome some
limitations of DFC. This method introduces an external parame-
ter (the control magnitude) that helps to stabilization. We intend
to provide a general and flexible framework in order to study sta-
bility and bifurcations in these control methods, especially when
the control is applied in the form of pulses, that is, interventions
only take place once every ωc periods, where ωc ∈ N is chosen
appropriately. This type of pulse control was suggested in several
papers [6–9].

Our principle theoretical tool to tackle the above stabilization
problem is the concept of a stability domain. This subset of the
complex plane is characteristic for a particular control scheme and
depends on the control magnitude. It indicates whether an unsta-
ble solution ξ of (1.1) can be stabilized resp. a bifurcation can be
avoided. More precisely, a stabilization is possible, provided there
exists a control scheme whose stability domain contains the Flo-
quet spectrum of an unstable solution; a bifurcation can be sup-
pressed as long as the spectrum stays in the stability domain under
varying system parameters. We stress that, up to our knowledge,
this concept of stability domain is new in the framework of chaos
control; it is different from other control domains that search for
a parameter region for which a particular system can be stabilized
(see, e.g., [10,11]).

Throughout the paper, (asymptotic) stability is always under-
stood in a local sense near the particular reference solution; for
global stabilization we refer to [8,12]. The basics of our approach
to stabilize periodic solutions to periodic systems of difference
equations (1.1) is presented in the subsequent Section 2. Then the
following Sections 3–4 discuss external resp. internal prediction
based control, the resulting schemes and especially their applica-
bility in preventing destabilizing bifurcations. We close and illus-
trate our results by means of five explicit examples: A 2-periodic
solution to a generalized Beverton–Holt equation can be stabi-
lized over a large parameter domain, whose size certainly depends
on the pulse frequency. Afterwards, for each parameter value in
the delayed logistic equations we identify minimal control magni-
tudes required to stabilize the nontrivial fixed point. We are also
able to stabilize the Hénon map for a sufficient parameter range,
suggest a flexible stabilization scheme for delay-difference equa-
tions and finally investigate single-species populationmodelswith
harvesting.

In order not to interrupt the text, we introduce and discuss
various relevant stability domains in the Appendix.

2. Stabilization of periodic solutions

Let us suppose that ω is the least common multiple of both the
period ω1 to the solution ξ = (ξn)n∈N0 , as well as to the period
ω0 of the difference equation (1.1). The period maps πn : Ω → Ω

associated to (1.1) are defined as compositions

πn(x) := fn+ω−1 ◦ · · · ◦ fn(x)

and one obviously has

πn(ξn) = ξn for all n ∈ N0. (2.1)

We also introduce the period matrix

Πn(ξ) := f ′

n+ω−1(ξn+ω−1) · · · f ′

n(ξn) ∈ Rd×d

and it is well-known (see, e.g. [13, Theorem 2.3]) that the periodic
solution ξ is asymptotically stable, if and only if all eigenvalues
(also called Floquet multipliers) of Πn(ξ) are contained in the open
unit disk of C. Moreover, provided there exists a Floquetmultiplier
λwith |λ| > 1, then ξ is unstable. Note that the Floquetmultipliers
do not depend on the index n ∈ N0 (cf. [13, Proposition 2.2]) and
we will typically choose n = 0.

In order to stabilize a periodic solution ξ , let us investigate
control schemes

xn+1 = Fn(xn, un(xn)) (2.2)

with a right-hand side Fn : Ω × Rd
→ Ω of class C1. For the

sake of a noninvasive scheme, beyond Fn(x, 0) = fn(x)we consider
continuously differentiable control functions u : Rd

→ Rd with
u(ξ0) = 0. Then a periodic pulse control is realized via

un(x) =


u(x), n ∈ ωcN0,
0, n ∉ ωcN0,

where ωc is a multiple of ω = lcm {ω0, ω1}, say

ωc = lω for some l ∈ N.

In doing so, we apply the control in the first step already and wait
ωc − 1 generations until the original difference equation (1.1) is
subject to another pulse. The particular integer l indicates the num-
ber of cycles afterwhich the control should be applied. In summary,
(2.2) is an ωc-periodic difference equation with linearization

dFn
dx

(x, un(x))

=


D1Fn(x, u(x)) + D2Fn(x, u(x))u′(x), n ∈ ωcN0,
f ′

n(x), n ∉ ωcN0.

The corresponding period matrix for (2.2) along ξ becomes

Π̃0(ξ) = Π0(ξ)l + Π0(ξ)l−1f ′

ω−1(ξω−1)

· · · f ′

1(ξ1)D2F0(ξ0, 0)u′(ξ0)

and the ω0-periodic solution ξ is called

• (locally) stabilizable, if there exists a K ∈ Rd×d, so that all
eigenvalues of

Π0(ξ)l + Π0(ξ)l−1f ′

ω−1(ξω−1) · · · f ′

1(ξ1)D2F0(ξ0, 0)u′(ξ0)K (2.3)

are contained in the open unit disk B1(0) ⊆ C
• (locally) conditionally stabilizable, provided ξ is (locally) stabi-

lizable by means of the matrix K = −αId for some α ∈ R

The role of the matrix K ∈ Rd×d will become clear in the following
stability analysis purely based on the linearization of (2.2) along
ξ . In fact, K serves as a state feedback or gain state matrix in (2.4)
below.

2.1. Stabilization

By means of classical linear control theory (cf. e.g. [14,
pp. 429–476, Chapter 10]) one obtains

Proposition 2.1. If Π0(ξ)l−1f ′

ω−1(ξω−1) · · · f ′

1(ξ1)D2F0(ξ0, 0)u′(ξ0)

∈ Rd×d is invertible, then the periodic solution ξ is locally stabilizable.

Remark 1. The invertibility assumption is satisfied, if all matrices
D2F0(ξ0, 0), u′(ξ0) and f ′

j (ξj) for 0 ≤ j < ω are invertible. In case
l = 1 it even suffices to assume the latter condition for 1 ≤ j < ω.

Proof. Above all, observe that the periodic solution ξ to (2.2) is
asymptotically stable, if and only if the spectrum of Π̃0(ξ) is con-
tained in the open unit disk B1(0) ⊆ C, which in turn is equivalent
to the asymptotic stability of the linear autonomous equation

xn+1 = Π̃0(ξ)xn = Axn + Bxn (2.4)
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with the coefficient matrices

A := Π0(ξ)l,

B := Π0(ξ)l−1f ′

ω−1(ξω−1) · · · f ′

1(ξ1)D2F0(ξ0, 0)u′(ξ0).

Our invertibility assumption implies d = rk(B, AB, A2B, . . . ,
Ad−1B) and consequently [14, p. 433, Theorem 10.4] ensures that
the problem xn+1 = Axn+Bun is completely controllable, hence us-
ing [14, p. 462, Corollary 10.22] also stabilizable. This means there
exists a K ∈ Rd×d such that xn+1 = Axn + BKxn is asymptotically
stable, i.e. the spectrum of A + BK is contained in B1(0). �

2.2. Conditional stabilization

Often it is too expensive, or hard to realize in vivo, to feedback
control (1.1) using awholematrixK ∈ Rd×d as required in (2.3) and
one has to restrict to simpler control methods. We actually target
at schemes involving only one scalar control parameter, i.e. feed-
backs of the form −αu, α ∈ R, rather than Ku. This distinguishes
stabilization from conditional stabilization. Here, the control mag-
nitude α follows two objectives:

• Weak control: α regulates the strength of the control and is
preferably of small absolute value.

• Strong control: More dynamically, α can be adjusted according
to the value of the systemparameters in (1.1) in order to oppress
destabilizing bifurcations and to continue a given solution over
a large parameter range.

For the purpose of amore detailed discussion, suppose there exists
a so-called stability functionχ : U → C on an open domainU ⊆ C,
such that one has the representation

f ′

ω−1(ξω−1) · · · f ′

1(ξ1)D2F0(ξ0, 0)u′(ξ0) = χ(Π0(ξ0)). (2.5)

Explicit examples that this at first glance rather artificial assump-
tion can be achieved, follow below and thus the linearization (2.3)
becomes

Π0(ξ)l − αΠ0(ξ)l−1χ(Π0(ξ)) ∈ Rd×d. (2.6)

Then we can define the stability domain

S l
α := {z ∈ U : |z l − αz l−1χ(z)| < 1} for all l ∈ N

of our control scheme (2.2) and illustrate this concept by means of

Example 2.2. Suppose that ξ ∈ Ω is an equilibrium of the au-
tonomous equation

xn+1 = f0(xn) (2.7)

and let (2.2) be of the form

xn+1 = f0(xn) − αun, un(x) :=


f0(x) − x, n ∈ lN0,
0, n ∉ lN0

for some l ∈ N. Hence, due to ωc = llcm {1, 1} = l the resulting
control scheme (2.2) is l-periodic. Thus, (2.6) takes the form

f ′

0(ξ)l − αf ′

0(ξ)l−1
[f ′

0(ξ) − Id] = f ′

0(ξ)l − αf ′

0(ξ)l−1χ(f ′

0(ξ))

with the stability function χ : C → C, χ(z) = z − 1. This implies
the stability domain

S l
α = {z ∈ C : |z l − αz l−1(z − 1)| < 1}

= {z ∈ C : |(1 − α)z l + αz l−1
| < 1}

and an analysis of these α-dependent sets for different values of l
can be found in the subsequent Examples A.1 and A.2; illustrations
are given in Figs. A.13–A.16. For the scalar case, this control scheme
has been considered in [8].
Proposition 2.3 (Properties of the Stability Domain). Beyond S l
0 =

B1(0) the following holds true for all l ∈ N and α ∈ R:
(a) If z → z l − αz l−1χ(z) is continuous, then S l

α is open.
(b) If χ(z) = χ(z̄), then S l

α is symmetric w.r.t. the real axis, provided
also U ⊆ C has this property.

(c) If χ(z) = −χ(−z), then S l
α is symmetric w.r.t. the origin,

provided also U ⊆ C has this property.
Whendealingwith difference equations (1.1) and (2.2) inRd it is

important have stability domains fulfilling Proposition 2.3(b), since
eigenvalues leave the complex unit disk in complex conjugated
pairs.
Proof. Let z ∈ S l

α for l ∈ N, α ∈ R.
(a) S l

α is the preimage of the open set (−∞, 1) under a continuous
map.

(b) Due to
z̄ l − αz̄ l−1χ(z̄)

 =

z l − αz l−1χ(z)
 =

z l − αz l−1χ(z)


< 1 one has the inclusion z̄ ∈ S l
α .

(c) From (−z)l − α(−z)l−1χ(−z) = (−1)lz l − α(−1)lz l−1χ(z) =

(−1)l[z l − αz l−1χ(z)] we obtain the desired −z ∈ S l
α . �

The terminology ‘‘stability domain’’ is motivated by the follow-
ing central result:

Theorem 2.4. Suppose (2.5) holds with a stability function χ holom-
orphic on U. An ω1-periodic solution ξ of (1.1) is conditionally
stabilizable using a control scheme (2.2), if and only if there exists an
α ∈ R satisfying the inclusion

σ(Πn(ξ)) ⊆ S l
α for one n ∈ N0.

Remark 2. A control scheme (2.2) is called stability preserving, if
B1(0) ⊆ S l

α holds. This means it does not destabilize asymptoti-
cally stable periodic solutions of (1.1) and thus prevents bifurca-
tions caused by a stability change. Actually, it stabilizes Floquet
multipliers leaving the complex unit disk, while it has no destabi-
lizing effect on the remaining spectrum. Since for scalar equations
(1.1) this remainder of the spectrum is empty, stability preserva-
tion is of primary interest when dealing with higher-dimensional
problems.
Proof. All periodmatricesΠn(ξ), n ∈ N0, have the same spectrum
and therefore we restrict to the case n = 0. By definition, the
solution ξ is conditionally stabilizable, if and only if (cf. (2.6))

|λ| < 1 for all λ ∈ σ

Π0(ξ)l − αΠ0(ξ)l−1χ(Π0(ξ))


⇔
λl

− αλl−1χ(λ)
 < 1 for all λ ∈ σ(Π0(ξ))

⇔λ ∈ S l
α for all λ ∈ σ(Π0(ξ))

due to the spectral mapping theorem (cf., for instance, [15, p. 227,
Corollary 1]). �

For later use we also state

Lemma 2.5. Let ξ be a fixed point of a C1-mapping π : Ω → Ω . For
k ∈ N one has
(a) (π k)′(ξ) = π ′(ξ)k.
(b) If π is a C1-diffeomorphism, then (π−k)′(ξ) = π ′(ξ)−k.
Proof. (a) We proceed by mathematical induction. Clearly, the

claimholds for k = 1. In the induction step k → k+1we invest
(π k)′(ξ) = π ′(ξ)k, obtain from the chain rule (π k+1)′(x) =

(π ◦ π k)′(x) = π ′(π k(x))(π k)′(x) and hence get

(π k+1)′(ξ) = π ′(π k(ξ))(π k)′(ξ)

= π ′(ξ)(π k)′(ξ) = π ′(ξ)k+1.

(b) Since π is a C1-diffeomorphism, we have x ≡ π−1(π(x)) and
differentiation yields by the chain rule Id = (π−1)′(π(x))π ′(x).
So, (π−1)′(ξ)π ′(ξ) = Id and thus π ′(ξ) is invertible. Similarly,
taking the derivative of the identity π−k(π k(x)) ≡ x and set-
ting x = ξ implies the claim (b). �
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3. External PBC

This section centers around the concrete control scheme
Fn : Ω × Rd

→ Ω ,

Fn(x, un) := fn(x) − αun, (3.1)

which is clearly noninvasive. Due to D2Fn(x, u) = −αId the period
matrix for (2.2) along an ω1-periodic solution ξ to (1.1) becomes

Π̃0(ξ) = Π0(ξ)l − αΠ0(ξ)l−1f ′

ω−1(ξω−1) · · · f ′

1(ξ1)u
′(ξ0).

For prediction based control we choose

un := u(xn), u(x) :=


f ω
0 (x) − f ω

0 (x), ω = 1,
f ′

0(ξ0)[π
ω
0 (x) − π

ω

0 (x)], ω > 1
(3.2)

with nonnegative integers ω < ω. Provided each fn : Ω → Ω is a
C1-diffeomorphism, one can additionally allow arbitrary integers
ω < ω and in any case Lemma 2.5 implies

u′(ξ) =


f ′

0(ξ)ω − f ′

0(ξ)ω, ω = 1,
f ′

0(ξ0)[Π0(ξ)ω − Π0(ξ)ω], ω > 1.

This information and Proposition 2.1 yield conditions for the (local)
stabilizability of ξ . On the other hand, to investigate conditional
stabilization, we arrive at the stability function

χ(z) :=


zω

− zω, ω = 1,
z(zω

− zω), ω > 1,
(3.3)

which is polynomial for ω ≥ 0. The resulting stability domains of
the form

S l
α

(A.1)
=


S l

α(l + ω − 1, l + ω − 1), ω = 1,
S l

α(l + ω, l + ω), ω > 1
for all α ≠ 1

are discussed in the Appendix.
A basic goal of our control approach is to prevent destabilizing

bifurcations, which go hand in hand with stability changes caused
by Floquet multipliers leaving the unit disk. Thus, it makes sense
to restrict to stability preserving schemes.

3.1. Fixed-points of autonomous equations

Let us first investigate fixed points of autonomous equations
(1.1), which correspond to the situationω = 1.Moreover, we focus
on the commonly used control

u(x) = f0(x) − x (3.4)

(meaning ω = 1, ω = 0) yielding the simple stability function
χ(z) = z − 1 and the stability domain

S l
α = S l

α(l, l − 1).

(a) Without pulses (l = 1) the corresponding set S1
α(1, 0) is dis-

cussed in Example A.1; see Figs. A.13 and A.14 for an illus-
tration. This scheme is stability preserving for α ∈ (0, 1).
By choosing the control magnitude α sufficiently close to 1
it is possible to stabilize a fixed point ξ , provided the spec-
trum σ(f ′

0(ξ)) is either fully contained in the open half-plane
{z ∈ C : ℜz < 1} (α < 1), or fully contained in the com-
plementary half-plane {z ∈ C : ℜz > 1} (α > 1). While
S1

α(1, 0) can be made arbitrarily large, it is not possible to sta-
bilize fixed points with eigenvalues in both of the above half
planes, or with real part 1. Yet one can always stabilize fixed
points ξ of scalar equations with f ′

0(ξ) ≠ 1.
(b) When introducing pulses (l > 1) the stability domains S l

α(l, l−
1) are considered in Example A.2. While the schemes remain
stability preserving for α ∈ (0, 1), the stability domains dras-
tically shrink (see Figs. A.15 and A.16). Therefore, stabilization
can only be expected for spectra near the real axis and moder-
ate imaginary parts.
Both schemes considered in (a) and (b) are stability preserving
for α ∈ (0, 1). However, they have in common that an unstable
equilibrium after a transcritical or pitchfork bifurcation, where
a simple eigenvalue leaves the unit circle through 1, cannot be
stabilized with modest control magnitudes α ∈ (0, 1) — in fact,
it is not possible to stabilize eigenvalues with real part 1. On
the other hand, stabilization works for a flip bifurcation, where
a simple eigenvalue leaves the unit circle at −1, as well as for a
Neimark–Sacker bifurcation. The first situation typically occurs in
a period doubling cascade leading to chaotic behavior. However,
using the scheme u(x) = f0(x) − x and allowing α > 1 one can
avoid a transcritical or pitchfork bifurcation of a scalar equation
for l = 1. This is also true for pulses with l = 2, when one chooses
α > 2 or l = 3 with α > 3. Thus, fewer pulses require higher
control magnitudes (see Fig. 1).

Next we discuss an external PBC scheme, which somehow
circumvents the disadvantage of (a) and (b), namely the fact that
eigenvalues with real part 1 cannot be stabilized. Here, we choose

u(x) = f0(x) − f −1
0 (x), (3.5)

which restricts our considerations to smoothly invertible map-
pings f0 and one admittedly looses stability preservation. How-
ever, the scheme (3.5) has the benefit that unstable eigenvalues for
Eq. (1.1) become stable eigenvalues for the time-reversed system
xn+1 = f −1

0 (xn) and thus (3.5) incorporates a stabilizing effect. The
stability function to (3.5) is χ(z) = z −

1
z and we obtain:

(c) In the absence of pulses, for l = 1, one has the stability domain

S1
α(1, −1) = {z ∈ C \ {0} : |z − α(z − z−1)| < 1}

from Example A.3 illustrated in Figs. A.17 and A.18. It guaran-
tees that a fixed point ξ ∈ Ω with arbitrary spectrum σ(f ′

0(ξ))
disjoint from the closed unit disk can be stabilized by choosing
α ∈ (0, 1) sufficiently close to 1 (see Fig. A.17). For parame-
ters α > 1 the domain of stability shrinks again, but becomes
suitable for real eigenvalues with moduli >1 (see Fig. A.18).

(d) Including pulses, for l > 1, the schemes are stability preserving
for α ∈ (0, 1) due to the stability domains

S l
α(l, l − 2) = {z ∈ C : |(1 − α)z l + αz l−2

| < 1} for all l > 1

discussed in Example A.4. Specifically, for l = 2 one can sta-
bilize eigenvalues with large imaginary parts (and small real
parts) by choosing α < 1 close to 1 (for this, cf. Fig. A.19).
On the other hand, the situation 1 < α stabilizes spectra out-
side B̄1(0) featuring eigenvalueswith arbitrarily large real parts
(and modest imaginary parts, see Fig. A.20).
In summary, for weak controls α < 1 only the method with-

out pulses is able to stabilize fixed points of scalar equations af-
ter a transcritical, pitchfork or flip bifurcation (in fact for α =

1
2 ),

where the critical eigenvalues have the value ±1. With pulses
l > 1 higher control magnitudes are needed: Bifurcations caused
by eigenvalues leaving the unit circle on the real axis require to
choose α > 1 (at least when l = 2) and even larger values of α
when l > 2 (cf. Fig. 2). However, in two dimensions one can sup-
press Neimark–Sacker bifurcations for α < 1 near 1.

A scheme avoiding also flip bifurcations is given by u(x) =

f0(x)− f 1−l
0 (x) for odd l > 2. With α ∈ (0, 1) it is stability preserv-

ing. The according stability domains are discussed in Example A.5
and illustrated in Figs. A.22 and A.24.

3.2. Nontrivial periodic points

When dealingwith nonconstant periodic solutions (or Eqs. (1.1)
having period ω0 > 1) one has a common period ω > 1 and
controls apply everyωcth generation withωc = lω for some l ∈ N.
Thus, following (3.3), the stability function becomes

χ(z) = z(zω
− zω)
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Fig. 1. White shaded areas: Intersection of the stability domain S l
α(l, l − 1) with the real axis for different values of α (horizontal axis), if l = 1 (left), l = 2 (center) and

l = 3 (right).
Fig. 2. White shaded areas: Intersection of the stability domain S l
α(l, l − 2) with the real axis for different values of α (horizontal axis), if l = 1 (left), l = 2 (center) and

l = 3 (right).
and moreover implies the stability domains

S l
α = {z ∈ C : |z l − αz l(zω

− zω)| < 1}

= S l
α(l + ω, l + ω) for all l ∈ N.

Therefore one cannot expect stability preserving schemes for all
α ≠ 1.

(a) Without pulses, meaning l = 1, a simple control scheme oc-
curs for ω = 1, ω = 0 yielding the stability domain S1

α(2, 1)
discussed in ExampleA.6. Here, for controlmagnitudesα < 0 it
is possible to stabilize flip bifurcations. Choosing larger values
for ω in S1

α(ω + 1, 1) enables to stabilize Floquet multipliers,
whose arguments are close to those of the roots of zω

= −1.
The situation changes when using control magnitudes α > 0.
In this case, it is possible to stabilize Floquetmultipliers leaving
the unit circle at the roots of zω

= 1.
(b) When applying pulses every lth generation (l > 1), the emerg-

ing stability domains S l
α(l+ω, l) are discussed in Example A.7.

One observes that they shrink but behave similarly to the
pulse-free situation (a). For instance with l = 2, real negative
Floquet multipliers can be controlled taking ω = 1, imaginary
Floquet multipliers taking ω = 2 and a triangular symmetry of
the stability domain is given for ω = 3, etc.

In conclusion, the above schemes to control periodic solutions re-
quire small negative values of the parameter α. To avoid bifurca-
tions caused by Floquet multipliers leaving the unit circle at 1, one
has to use positive α, where the required control magnitude de-
pends on ω (cf. Fig. 3).

4. Internal PBC

An alternative control scheme Fn : Rd
× Rd

→ Rd explicitly
reads as

Fn(x, un) := fn(x − αun) (4.1)
and this scheme yieldsD2Fn(x, u) = −αf ′
n(x−u). The linearization

(2.3) becomes

Π̃0(ξ) = Π0(ξ)l − αΠ0(ξ)lu′(ξ0).

Using the prediction based control

un := u(xn), u(x) := πω
0 (x) − π

ω

0 (x)

we obtain a noninvasive scheme and employ Lemma 2.5 to arrive
at u′(ξ) = Π0(ξ)ω − Π0(ξ)ω . Hence, Proposition 2.1 leads to con-
ditions for the (local) stabilizability of ξ .

To investigate conditional stability,we thus have to consider the
stability function

χ(z) = z(zω
− zω)

and the corresponding stability domains. Their properties are
already known from the discussion in the previous Section 3 and
the Appendix.

5. Examples

5.1. Generalized Beverton–Holt equation

Let us consider the generalized Beverton–Holt equation

xn+1 =
βxn

1 + xγ
n
, (5.1)

where β > 0, γ > 1 are reals. This difference equation has been
very useful in biological models due to its flexibility to fit popula-
tions data [16,17]. Differing from the classical Beverton–Holt equa-
tion (where γ = 1), the generalized equation (5.1) with γ > 1
features a significantly richer dynamics, when the real parameter
β > 0 increases. Let us fix the value γ = 4, and take β as a bifur-
cation parameter, that is, we focus on equation

xn+1 = fβ(xn) :=
βxn

1 + x4n
. (5.2)
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Fig. 3. White shaded areas: Intersection of the stability domain S1
α(m, 1) with the real axis for different values of α (horizontal axis), if m = 2 (left), m = 3 (center) and

m = 4 (right).
Fig. 4. Feigenbaumdiagram illustrating the limit behavior and the period-doubling
cascade of the generalized Beverton–Holt equation (5.2) for different values of β

(horizontal axis). The symbol x∞ indicates the long-term behavior (the typical limit
set).

For β ∈ (0, 1] the unique equilibrium to (5.2) is the trivial one,
until at β = 1 the asymptotically stable equilibrium 4

√
β − 1 bi-

furcates.
We are primarily interested in the secondary bifurcation at β =

2, where 4
√

β − 1 bifurcates into the 2-periodic solution

ξn :=


β +


β2 − 4
2

 (−1)n
2

for all β > 2 (5.3)

by means of a flip (period doubling) bifurcation. This solution
preserves its asymptotic stability until at β = 2

√
2 another flip

bifurcation occurs giving rise to an asymptotically stable 4-periodic
solution.Wedepicted the resulting transition into chaotic behavior
by means of the Feigenbaum diagram in Fig. 4.

Our intention is to stabilize the 2-periodic solution (5.3) being
present for β ≥ 2. Since (5.2) is autonomous (i.e. ω0 = 1), we
have ω = 2. Using external PBC, the control scheme (2.2) becomes
explicitly

xn+1 =


fβ(xn) − αu(xn), n ∈ ωcN0,
fβ(xn), n ∉ ωcN0

(5.4)
with ωc = 2l and the control functions (cf. (3.2))

u(x) := f ′

β(ξ0)(f 2β (x) − x) = −β
3ξ 4

0 − 1
(1 + ξ 4

0 )2


f 2β (x) − x


.

We illustrated the stabilizing behavior by means of the Feigen-
baum diagrams in Fig. 5. They indicate that already a moderate
control strength α = −0.1 yields stabilization for a large interval
of values for β — far into the chaotic regime. Clearly, the range for
β ensuring that ξ is attractive shrinks when control is only applied
every 4th step, i.e. when ωc = 4 and thus l = 2, or even l = 3.

Indeed, the decreasing stability domains S l
−α(l+1, l) (see (A.1))

of the corresponding control schemes for increasing values of l ∈

{1, 2, 3} are illustrated in Fig. 6. Yet, all of them contain the critical
eigenvalue −1.

5.2. Delayed logistic equation

In some discretemodels, the feedback function involves a delay,
leading to a higher order difference equation (or delay-difference
equation). Indeed, the dynamics of the delayed logistic equation
xn+1 = λxn(1−xn−k)with delay k ∈ N is equivalent to the (k+1)-
dimensional difference equation

xn+1 = fλ(xn), fλ(x) :=


λx1(1 − xk+1)

x1
...

xk

 (5.5)

with right-hand side fλ : (0, ∞)k+1
→ (0, ∞)k+1 and λ > 0. Here,

the mapping fλ is invertible, where the inverse becomes

f −1
λ (x) =


x2
...

xk+1

λx2 − x1

λx2


Fig. 5. Feigenbaum diagrams for the external PBC control schemes (5.4) applied to the generalized Beverton–Holt equation (5.2) with α = −0.1 and l = 1 (left), l = 2
(center) and l = 3 (right).
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Fig. 6. Critical Floquet multiplier (black dot) and stability domains S l
−0.1(l + 1, l)

(gray-shaded areas) for the external PBC schemes (5.4) applied to the generalized
Beverton–Holt equation (5.2) with control intensity α = −0.1.

Fig. 7. Bifurcation diagram of the delayed logistic difference equation (5.5) with
k = 1: Birth of an invariant circle at the parameter value λ = 2.

and there exist two equilibria0
...
0

 , ξ(λ) := (1 −
1
λ
)

1
...
1


to Eq. (5.5). In particular for k = 1, the trivial equilibrium loses its
asymptotic stability at λ = 1 and transcritically bifurcates into
ξ(λ) ∈ R2. A secondary bifurcation occurs at λ = 2, when
the asymptotic stability of ξ(λ) gets transferred to an invariant
circle by means of a Neimark–Sacker bifurcation (see Fig. 7). The
corresponding complex-conjugated eigenvalues

µ±(λ) :=
1
2 (1 ±

√
5 − 4λ)

leave the unit circle for λ = 2 at the points 1
2


1 ± i

√
3

.

It turns out that the ability to stabilize the nontrivial equilib-
rium ξ(λ) strongly depends on the delay k ∈ N. We illustrate this
in the following Figs. 8–9. Here, the horizontal axis contains the
value of the parameter λ, while the vertical axis indicates the con-
trol magnitudes α required to stabilize the nontrivial equilibrium
ξ(λ) for a particular external PBC scheme (3.1) and pulse frequency
l ∈ {1, 2, 3}.

• Fig. 8 displays our results for the simplest scheme (3.4), which
at least for the delay k = 1 is able to stabilize ξ(λ) over a large
range of λ with modest control magnitudes (cf. Fig. 8 (left)). In
Fig. A.13we depicted the location of the spectrum (delay k = 1)
w.r.t. the stability domains (l = 1). The introduction of pulses
drastically lessens themaximal value of λ inwhich stabilization
succeeds to a value between 2 and 2.5.

• To counteract this diminishment, Fig. 9 represents the more
advanced scheme (3.5) relying on the inverse of fλ. Then the
introduction of pulses allows a stabilization for large values
of λ, provided k = 1 (cf. Fig. 9(left)). For delays k > 1, the
situation becomes more critical. In Fig. A.17 we illustrated the
spectrum of the linearization corresponding to ξ(2) and the
delay k = 3 in relation to the stability domains for different
control magnitudes.

5.3. Hénon map

The well-known Hénon map
xn+1
yn+1


= fa,b(xn, yn), fa,b(x, y) :=


y + 1 − ax2

bx


(5.6)

with real parameters a, b > 0 (the usual choices yielding chaotic
behavior are a = 1.4 and b = 0.3) has the smooth inverse

f −1
a,b (x, y) =

 y
ba

b
y2 + x − 1

 .

The Eq. (5.6) possesses the two equilibria

ξ±(a, b) :=
1
2a


b − 1 ±


4a + (b − 1)2

b(b − 1 ±


4a + (b − 1)2)


,

where the corresponding linearizations f ′

a,b(ξ±(a, b)) ∈ R2×2 typi-
cally have eigenvalues in both of the half-planes {z ∈ C : ℜz < 1}
and {z ∈ C : 1 < ℜz}. Hence, a scheme of the form (3.4) will not
work (cf. Figs. A.13–A.16).

A possible way to avoid this limitation consists in choosing
exponents m > 1, n = m − 1 in (A.1) (cf. [18]) and the control
scheme

u(x) := f ma,b(x) − f m−1
a,b (x).

For example, m = 5, n = 4 enlarges the region of the pairs (a, b)
for which the fixed point ξ+(a, b) is stabilized with α = 0.05; see
Fig. 10(left).

Similarly Fig. 10(center, right) illustrates two stability domains
for the above schemebeing able to stabilize ξ+(a, b) (choosem = 5
and α = 0.05), as well as ξ−(a, b) (choosem = 4 and α = 0.045).

5.4. Delay-difference equations

We consider a discrete analogue of a model in hematopoiesis
(blood cell production) discussed in [19] and [20, Section 4.6]; for
further results, see [21,22] and references therein.

This discrete model is defined by a delay-difference equation

xn+1 = axn + (1 − a)
b

1 + xpn−k
, (5.7)

where a ∈ [0, 1), b > 0, p > 0 are reals and k ∈ N. Eq. (5.7)
has a unique positive equilibrium x̄(a, b), which is the only positive
solution of the equation xp+1

+ x = b.
The dynamics of (5.7) is equivalent to the (k + 1)-dimensional

difference equation

xn+1 = fa,b(xn), fa,b(x) :=


ax1 + (1 − a)g(xk+1)

x1
...

xk


with right-hand side fa,b : (0, ∞)k+1

→ (0, ∞)k+1, and
g : (0, ∞) → (0, ∞) defined as g(x) = b/(1 + xp). Since g is
strictlymonotone, f is invertible.We aim at stabilizing the positive
equilibrium ξ(a, b) = (x̄(a, b), x̄(a, b), . . . , x̄(a, b)) ∈ (0, ∞)k+1.
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Fig. 8. Gray-shaded areas: Parameter-control pairs (λ, α) for which the simple control scheme (3.4) allows to stabilize the fixed point ξ(λ) of (5.5) with control magnitude
α and pulse frequencies l ∈ {1, 2, 3} (from left to right) and delays k ∈ {1, 2, 3}; notice the different scalings.
Fig. 9. Gray-shaded areas: Parameter-control pairs (λ, α) for which the control scheme (3.5) allows to stabilize the fixed point ξ(λ) of (5.5) with control magnitude α and
pulse frequencies l ∈ {1, 2, 3} (from left to right) and delays k ∈ {1, 2, 3}; notice the different scalings.
Fig. 10. Left: The gray-shaded areas are parameter pairs (a, b) for which the scheme (3.1)–(3.2) allows to stabilize the fixed point ξ+(a, b) of (5.6) with parameters
α = 0.05, l = 1, and ω = ω − 1. The small region (in dark gray) corresponds to ω = 1, i.e., scheme (3.4), and the large region (in light gray) to ω = 5. The latter
includes the usual parameter choice (a, b) = (1.4, 0.3) (black dot). Center, right: Eigenvalues (black dots) for the linearization of the Hénon map (5.6) in the equilibria
ξ−(a, b) (center) and ξ+(a, b) (right) with stability domains S1

0.045(4, 3) (center) resp. S
l
0.05(5, 4) (right) and the unit disk for schemes stabilizing them (white area).
Let us fix k = 2, p = 2. If b < 2, the equilibrium ξ(a, b) is asymp-
totically stable for all a ∈ [0, 1). In the limit case a = 0, the eigen-
values of the linearized equation at ξ(0, b) for b = 2 are the cubic
roots of −1, and ξ becomes unstable for b ≥ 2. Actually, at b = 2
there is a resonance, leading to the coexistence of two stable peri-
odic solutions (one of period two, and other of period six); for a > 0
aNeimark–Sacker bifurcation occurs for a critical value b∗ > 2, and
an invariant curve is born [21,22].

To stabilize ξ(a, b) when b ≥ 2, we apply the external PBC
scheme (3.1) with pulse frequency l = 3 and

u(x) := f 2a,b(x) − f −2
a,b (x). (5.8)

The corresponding stability domains S3
α(3, 0) are considered in

Example A.5; see Fig. A.22. This method fits well to Eq. (5.7); in
Fig. 11(left, center) we depict the pairs (a, b) for which the scheme
succeeds to stabilize ξ(a, b) with k = p = 2 and control magni-
tudes α = 0.1 and α = 0.2. Furthermore, Fig. 11(right) illustrates
the critical eigenvalues in relation to the stability domains.
5.5. Single-species population models with harvesting

Finally, consider a discrete model for an exploited population.
The simplest approach consists of only two processes: reproduc-
tion and harvesting. If the population is censused only once (af-
ter harvesting or after reproduction), then the resulting model is
an autonomous difference equation; however, if the population is
monitored twice (after harvesting and after reproduction), then
the appropriate mathematical framework is a periodic difference
equation [23]. We consider a population with overcompensatory
growth defined by the usual Ricker map f (x) = xer(1−x), r > 0,
and subject to constant effort harvesting with harvesting rate γ ∈

(0, 1). The alternation of harvesting and reproduction can be de-
scribed by the periodic difference equation (1.1), where

fn(x) =


(1 − γ )x, n ∈ 2N0,

xer(1−x), n ∉ 2N0,
(5.9)

whose period map is πn(x) = fn((1− γ )x) = (1− γ )xer(1−(1−γ )x).
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Fig. 11. Left, center: The shaded areas are parameter pairs (a, b) for which the scheme (5.8) with pulse frequency l = 3 allows to stabilize the fixed point ξ(a, b) of (5.7)
with k = p = 2, and magnitudes α = 0.1 (left) and α = 0.2 (center); notice the different scale in the vertical axis. Right: Stability domains S3

α(3, 0) for α ∈ {0.1, 0.2} and
the eigenvalues of the linearization along ξ(a, b) with a = 0.01 for the critical case b = 2.02038.
Fig. 12. Blue-shaded areas: Parameter pairs (r, γ ) for which the scheme
(5.10)–(5.11) allows to stabilize the periodic solution ξ(r, γ ) of (5.9) with control
magnitudesα = −0.1 (left) andα = −0.15 (right); themeshed region corresponds
to pairs for which ξ is asymptotically stable without control.

Denote by Kγ ,r the unique positive solution of f ((1− γ )x) = x,
that is,

Kγ ,r =
1

1 − γ


1 −

1
r
ln


1
1 − γ


,

which exists for 0 < γ < 1 − e−r . Then the sequence ξ(r, γ ) =

(ξn)n∈N0 given by ξ2k = Kγ ,r , ξ2k+1 = (1 − γ )Kγ ,r , k ∈ N0, is a
2-periodic solution of (1.1). We aim at stabilizing this solution by
a control every time after reproduction, and consequently ω0 =

ω1 = 2, l = 1.
According to the discussion in Section 3.2, we use the control

scheme

xn+1 =


fn(xn) − αu(xn), n ∈ 2N0,
fn(xn), n ∉ 2N0

(5.10)

with the control functions

u(x) := (1 − γ )(π0(x) − x) = (1 − γ ) (fn((1 − γ )x) − x) . (5.11)

This control can be interpreted by removing or restocking popu-
lation depending on the difference between population size after
reproduction and the expected population size in the next gener-
ation (keeping the same harvesting pressure). The corresponding
stability domains are S1

α(2, 1), and are considered in Example A.6.
Since the 2-periodic solution ξ becomes unstable when its Floquet
multiplier is −1, we need to use control magnitudes α < 0. It is
easy to check that ξ is asymptotically stable if r ≤ 2 or r > 2 and
γ > 1 − e2−r .

Fig. 12 shows the pairs (r, γ ) for which the scheme succeeds
to stabilize ξ(r, γ ) with control magnitudes α = −0.1 and α =

−0.15.
6. Conclusions

Control of complex dynamics has been one of the main issues
in nonlinear science during the last decade [2]. Central problems
include the development of new and feasible control schemes, an
analytical insight into them, and their applications to interesting
areas as biological or technical systems.

In this paper, we further developed prediction-based control
schemes for their use in general systems of periodic difference
equations, and we provided a rigorous analytic study of stabiliza-
tion and conditional stabilization of an arbitrary unstable periodic
orbit (UPO); the latter allows to control the system using a sin-
gle scalar control parameter. Compared with the extensive work
made for autonomous systems, this particular nonautonomous
case has received very little attention, as far as the authors are
aware. Nevertheless, in many situations periodic difference equa-
tions aremore realisticmodels (for example, for populations grow-
ing in a fluctuatinghabitat [13]). Additionally, dealingwith systems
also allows to control delay difference equations.

We introduced the concept of a stability domain, which is a very
helpful tool to select the more suitable control scheme for each
particular application, depending on the location of the Floquet
multipliers of the targeted UPO, and to prevent destabilizing bifur-
cations. Moreover, stability domains are easily computed using the
standard computer algebra systems. Our main result establishes
that anUPO can be stabilized if there is a control schemewhose sta-
bility domain contains its Floquet spectrum.We provide a descrip-
tion of various relevant stability domains for different schemes in
the Appendix, and we illustrate their applicability in a number of
examples in Section 5.

Our theoretical framework allows pulse stabilization (or
periodic feedback [6]). This strategy is particularly useful when
control interventions are difficult or costly. Finally, a short program
to compute and plot stability domains can be found following the
link http://wwwu.uni-klu.ac.at/cpoetzsc/StabilityDomains.nb.
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Appendix. Stability domains

For the types of control schemeswewere studying, the stability
domains S l

α can be formulated as

S l
α(m, n) := {z ∈ U : |z l − α(zm − zn)| < 1} for all α ≠ 1 (A.1)

with suitable integers m > n and l ∈ N. Concerning the domain
U ⊆ C for the stability function χ one chooses U = C for n ≥ 0

http://wwwu.uni-klu.ac.at/cpoetzsc/StabilityDomains.nb
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Fig. A.13. Weak control for χ(z) = z − 1: Stability domain S1
α(1, 0) (white area)

containing the unit disk for magnitudes α = 0.5 (left) and α = 0.9 (right). The
black dots indicate the critical eigenvalue pair for nontrivial solution of the logistic
equation (5.5) with k = 1.

Fig. A.14. Strong control for χ(z) = z − 1: Stability domain S1
α(1, 0) (white area)

disjoint from the unit disk for magnitudes α = 1.1 (left) and α = 1.5 (right).

Fig. A.15. Weak control for χ(z) = z − 1: Stability domain S2
α(2, 1) (white area)

containing the unit disk for magnitudes α = 0.75 (left) and α = 0.83 (right).

Fig. A.16. Strong control for χ(z) = z − 1: Stability domain S2
α(2, 1) (white area)

and the unit disk for magnitudes α = 1.5 (left) and α = 2 (right).

and U = C \ {0} otherwise. Moreover, S l
0(m, n) = B1(0) reflects

the uncontrolled situation.
We first investigate several properties of these sets for α ≠ 1.

It turns out that α = 1 serves as a threshold separating different
shapes of S l

α(m, n):

(s0) 1 ∈ ∂S l
α(m, n); if bothm, n are even (odd), then

−1 ∈ ∂S l
α(m, n).

(s1) S l
α(m, n) is bounded for all n ≥ 0.
Fig. A.17. Weak control for χ(z) = z−
1
z : Stability domain S1

α(1, −1) (white area)
and the unit disk for magnitudes α = 0.25 (left) and α = 0.75 (right). The black
dots indicate eigenvalues to the linearization along the nontrivial solution of the
logistic equation (5.5) with k = 3.

Fig. A.18. Strong control forχ(z) = z− 1
z : Stability domain S1

α(1, −1) (white area)
disjoint from the unit disk for magnitudes α = 1.25 (left) and α = 1.5 (right).

Fig. A.19. Weak control for χ(z) = z −
1
z : Stability domain S2

α(2, 0) (white area)
containing the unit disk for magnitudes α = 0.75 (left) and α = 0.99 (right).

Fig. A.20. Strong control for χ(z) = z −
1
z : Stability domain S2

α(2, 0) (white area)
disjoint from the unit disk for magnitudes α = 1.01 (left) and α = 1.09 (right).

Proof. Due to m > n ≥ 0 the function p(z) := z l − α(zm −

zn) is a non-constant polynomial. Hence, the assumption
that S l

α(m, n) is unbounded guarantees that there exists a
sequence (zn)n∈N in S l

α(m, n) such that limn→∞ |p(zn)| = ∞,
which contradicts |p(zn)| < 1 for all n ∈ N.

(s2) S l
α(m, n) are invariantw.r.t. the rotations z → exp

 2π
gcd{l,m,n} i


z.



36 E. Liz, C. Pötzsche / Physica D 272 (2014) 26–38
Fig. A.21. Weak control: Stability domain S2
α(2, 0) (white area) containing the unit

disk for magnitudes α = 0.5 (left) and α = 0.95 (right).

Proof. Given z ∈ S l
α(m, n) we set µ := gcd{l,m, n}. For z̃ :=

e2π i/µz and integers µj with j = µµj for j ∈ {l,m, n} one has

|z̃ l − α(z̃m − z̃n)| = |z le2µlπ i
− α(e2µmπ izm − e2µnπ izn)|

= |z l − α(zm − zn)| < 1

and consequently z̃ ∈ S l
α(m, n).

(s3) B1(0) ⊆ S l
α(m, n) provided α ∈


(0, 1) and l = m > n ≥ 0,
(−1, 0) and m > l = n ≥ 0.

Proof. For every z ∈ B1(0) one has

|z l − α(z l − zn)| ≤ (1 − α)|z l| + α|zn| < 1
for all α ∈ (0, 1)

and therefore z ∈ S l
α(l, n). On the other hand it is

|z l − α(zm − z l)| ≤ |1 − αzm−l
+ α| < 1

for all α ∈ (−1, 0)

if and only if zm−l
∈ B1/|α|(

α+1
α

). This, nonetheless, holds true
because of zm−l

∈ B1(0) and B1(0) ⊆ B1/|α|(
α+1
α

) is satisfied
for all α ∈ (−1, 0).

(s4) Let ζ1, . . . , ζk ∈ C denote the roots of z l −α(zm −zn) = 0with
n ≥ 0 and k := max{l,m}. If all segments [ζi, ζj] are contained
in S l

α(m, n), then S l
α(m, n) is homeomorphic to the open disk

B1(0).

Proof. First of all, p(z) := z l − α(zm − zn) is a nonconstant
polynomial.

We assume that S l
α(m, n) is not connected. Due to our

assumption, all roots ζ1, . . . , ζk lie in one component and we
supposeV is a different component. Then |p(z)| > 0 for all z ∈

V and the closed set V̄ is bounded, thus compact. Therefore, p
has aminimum p(z∗) in V̄ . On the boundary ∂V it is |p(z)| ≥ 1,
so the minimum must lie in V and satisfy |p(z∗)| > 0. By
themaximummodulus principle (cf. [24, p. 91, Theorem 1.3]),
p is constant on V , which contradicts the fact that p is a
nonconstant polynomial. Hence, S l

α(m, n) is connected.
Assume that S l

α(m, n) is not simply connected. Then the
complement has a bounded component U . Since U is closed,
Fig. A.23. Strong control: Stability domain S2
α(2, 0) (white area) disjoint from the

unit disk for magnitudes α = 1.01 (left) and α = 1.09 (right).

|p(z)| achieves its maximum at some z0 ∈ U . Since the com-
plementC\S l

α(m, n) is closed andU is disjoint from the rest of
C \S l

α(m, n), there exists an open ball Bwhich only intersects
U . By the choice of z0 it is

|p(z)| < 1 ≤ |p(z0)| for all z ∈ B ∩ S l
α(m, n),

|p(z)| ≤ |p(z0)| for all z ∈ B ∩ U .

This again contradicts the maximummodulus theorem, since
p is not constant. Thus, S l

α(m, n) is simply connected. Now
the claim follows from the Riemann mapping theorem (see
[24, p. 306]).

Unless otherwise noted, the following properties of the stability
domains are based on (s0)–(s4) and Proposition 2.3:

Example A.1 (l = m = 1 and n = 0). In this simple situation, the
stability domain is bounded, topologically connected, symmetric
w.r.t. the real axis and explicitly given as

S1
α(1, 0) = {z ∈ C : |z − α(z − 1)| < 1} = B 1

|1−α|


α

α−1 , 0

.

It is the open disk in C with radius 1
|1−α|

and center


α
α−1 , 0


.

• Weak control α ∈ (0, 1): S1
α(1, 0) contains the unit disk B1(0).

By choosing α sufficiently close to 1, S1
α(1, 0) contains every

bounded subset of the open half-plane {z ∈ C : ℜz < 1}
(cf. Fig. A.13).

• Strong control α > 1: For α sufficiently close to 1, S1
α(1, 0)

contains every bounded subset of the open half-plane {z ∈ C :

ℜz > 1} (cf. Fig. A.14).

An introduction of pulses yields shrinking corresponding
stability domains, as seen by comparing Figs. A.13, A.14, A.17 and
A.18 with for instance the following Figs. A.15 and A.16:

Example A.2 (m = l > 1 and n = l − 1). For l > 1 the open
stability domains

S l
α(l, l − 1) = {z ∈ C : |z l − αz l−1(z − 1)| < 1}

are bounded and symmetric w.r.t. the real axis.
Fig. A.22. Stability domains S l
0.98(l, 0) (white area) containing the unit disk with l = 3 (left), l = 4 (center), l = 5 (right).
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Fig. A.24. Stability domains S l
1.02(l, 0) (white area) and the unit disk with l = 3 (left), l = 4 (center) and l = 5 (right).
• Weak control α ∈ (0, 1): The sets S l
α(l, l− 1) embrace the open

unit disk B1(0). Moreover, since the roots 0, α
1−α

of (1 − α)z l +
αz l−1 are contained in the convex setB1(0), we deduce from (s4)
that S l

α(l, l − 1) is topologically connected for α ∈ (0, 1
2 ). This

fails for certain α > 1
2 , as illustrated in Fig. A.15. For instance,

with l = 2 and concerning the intersection of S2
α(2, 1) with the

real axis, we obtain the maximal inclusions (see Fig. 1(center))

S2
α(2, 1) ⊃




1

α − 1
, 1


, α ∈


0, 2

√
2 − 1


,

1
α − 1

,
α −

√
α2 + 4α − 4

2(α − 1)



∪


α +

√
α2 + 4α − 4

2(α − 1)
, 1


,

α ∈


2
√

2 − 1


, 1


.

• Strong control α > 1: For l = 2 one has (see Figs. A.16 and 1
(center))

S2
α(2, 1)

⊃




α −

√
α2 + 4α − 4

2(α − 1)
, 1


∪


α +

√
α2 + 4α − 4

2(α − 1)
,

1
α − 1


,

α ∈ (1, 2],
α −

√
α2 + 4α − 4

2(α − 1)
,
α +

√
α2 + 4α − 4

2(α − 1)


∪


1,

1
α − 1


,

α ∈ (2, ∞).

The sets S2
α(2, 1) stay bounded inside a horizontal strip centered

around the real axis.

Weproceed to a stability domainwhich is feasiblewhendealing
with smoothly invertible mappings:

Example A.3 (l = m = 1 and n = −1). Consider the stability
domain

S1
α(1, −1) = {z ∈ C \ {0} : |z − α(z − z−1)| < 1},

which is symmetricw.r.t. the real axis and the origin. However, due
to the singularity at 0 it cannot contain the unit disk.

• Weak control α ∈ (0, 1): One can show the inclusion
z ∈ C : 1 < |z| < α

1−α


⊂ S1

α(1, −1) for all α ∈
 1
2 , 1


and S1

α(1, −1) becomes arbitrarily large as α ↗ 1. In fact, for α

sufficiently close to 1 the set S1
α(1, −1) contains every bounded

subset of C \ B̄1(0) (cf. Fig. A.17). Concerning the intersection
with the real axis one has (see Fig. 2(left))

S1
α(1, −1) ⊃


−1, α

α−1


∪


α
1−α

, 1

, α ∈


0, 1

2


,

α
α−1 , −1


∪

1, α

1−α


, α ∈

 1
2 , 1



and therefore S1
α(1, −1) contains reals with absolute value >1

even for α < 1.
• Strong control α > 1: One still has the inclusion (cf. Figs. A.18

and 2 (left))
α

1−α
, −1


∪

1, α

α−1


⊂ S1

α(1, −1)

guaranteeing that S1
α(1, −1) grows arbitrarily large for α ↘ 1.

Example A.4 (m = l > 1 and n = l−2). Given l > 1, the bounded
stability domains

S l
α(l, l − 2) = {z ∈ C : |z l − αz l−1(z − z−1)| < 1}

are symmetric w.r.t. the real axis and the origin.

• Weak control α ∈ (0, 1): S l
α(l, l−2) contains the open unit disk.

Moreover, the roots of (1−α)z2 +α = 0 given by ±i


α
α−1 are

contained in B1(0) and for this reason S l
α(l, l − 2) is connected

for α ∈

0, 1

2


. In particular, one has

iy : |y| <


1+α
1−α


⊂ S2

α(2, 0) for all α ∈ (0, 1)

and therefore by choosing α sufficiently close to 1 (α < 1),
every point on the imaginary axis is contained in one S2

α(2, 0)
(see Fig. A.19).

• Strong control α > 1: One has the inclusions
−


1+α
1−α

, −1


∪


1,


1+α
1−α


⊂ S2

α(2, 0) for all α > 1

and for α sufficiently close to 1 (α > 1), every point of
(−∞, −1) ∪ (1, ∞) is contained in one S2

α(2, 0) (see Figs. A.20
and 2 (center)).

The use of pulses can also yield stability preserving schemes for
weak controls:

Example A.5 (m = l > 1 and n = 0). Here, the open stability
domains

S l
α(l, 0) = {z ∈ C : |z l − αz l−1(z − z1−l)| < 1} for all α ≠ 1

possess a number of interesting symmetry properties: S l
α(l, 0) is

bounded, symmetric w.r.t. the real axis and rotations exp( 2π
l i);

for even l ∈ N the sets S l
α(l, 0) are also symmetric w.r.t. 0. We

deduce that the boundaries ∂S l
α(l, 0) contain the roots of unity

exp( 2πk
l i), 0 ≤ k < l. For an illustration, we refer to Figs. A.21–

A.24. In particular, for odd l > 2 we obtain the inclusion
−

l


1+α
1−α

, 1


⊂ S l
α(l, 0) for all α ∈ (0, 1).
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Fig. A.25. Negative control magnitude in Example A.6: Stability domain S1
α(2, 1)

(white area) and the unit disk for α = −0.15 (left) and α = −0.2 (right).

Fig. A.26. Positive control magnitude in Example A.6: Stability domain S1
α(2, 1)

(white area) and the unit disk for α = 0.5 (left) and α = 0.99 (right).

• Weak control α ∈ (0, 1): First, S l
α(l, 0) contain the open unit

disk B1(0). The sets S l
α(l, 0) become topologically connected

for α ∈

0, 1

2


, since the roots of (1 − α)z l + α lay in B1(0)

(cf. Figs. A.21 and A.22). Furthermore, the stability domains
S l

α(l, 0) contain the segments
0, l


1+α
1−α

exp
 2k+1

l π i


for all α ∈ (0, 1), 0 ≤ k < l.

• Strong control α > 1: The stability domains are disjoint from
the unit disk and disconnected with l components (cf. Figs. A.23
and A.24).

The following stability domains occur when dealing with
periodic equations (1.1) and require negative magnitudes for α
when aiming at weak control:

Example A.6 (l = 1,m = 2 and n = 1). The open and bounded
stability domain

S1
α(2, 1) = {z ∈ C : |z − α(z2 − z)| < 1}

is symmetric w.r.t. the real axis. One deduces the maximal
inclusions (cf. Fig. 3(left))

S1
α(2, 1) ⊃




1
α

, 1


, α ∈


−2

√
2 − 3, 2

√
2 − 3


,

1
α

,
1 + α − w

2α


∪


1 + α + w

2α
, 1


,

α ∈


2
√
3 − 3, 0



with w :=
√
1 + 6α + α2 and obtains that B1(0) ⊂ S1

α(2, 1) for
α ∈ (−1, 0) (see Fig. A.25). Because the roots of z − α(z2 − z)
are 0, 1+α

α
and thus contained in B1(0), we obtain that S1

α(2, 1) is
connected for α < −

1
2 . On the other hand, the stability domains

S1
α(2, 1) for control magnitudes α > 0 are depicted in Fig. A.26.

Example A.7 (l = n ∈ N,m > l). Generalizing Example A.6 we
see that the open sets

S l
α(m, l) = {z ∈ C : |z l − αz l−1(zm−l+1

− z)| < 1}
for all α ≠ 1

are bounded and moreover

• Weak control α ∈ (−1, 0): S l
α(m, l) contain the open unit disk

by (s3). Since the roots of z l−α(zm−z l) are either 0 or (m− l)th
roots of unity to α+1

α
, they are contained in the convex set B1(0);

thus S l
α(m, l) is connected for α < −

1
2 .

• Strong control: For |α| > 1 one loses the inclusion
B1(0) ⊆ S l

α(m, l).
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