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1. Introduction

Harvesting constitutes a key element in the management of
populations and renewable resources such as fishery or forestry.
Various forms of harvesting (e.g., hunting, culling, trapping,
pesticides) are used to exploit populations for economic benefit
and to control species that are considered pests or nuisances. In
recent years, it has been increasingly recognised that harvesting
can have a rather unexpected outcome, namely the so-called hydra
effect (Abrams, 2009). This describes the seemingly paradoxical
increase in population size when the population’s mortality is
increased. Different mechanisms can lead to a hydra effect. The one
considered here is based on harvesting a population with discrete-
time structure and overcompensatory density dependence (mech-
anism 2 in Abrams, 2009). As harvesting reduces population size, it
releases the population from competitive pressure and thus
prevents population crashes typical of scramble competition.
Hence, this may lead to an increased population density. A list of
references with empirical evidence for these hydra effects can be
found in Zipkin et al. (2009).

There are myriad of models considering the two processes of
harvesting and density-dependent reproduction. Some of them

assume harvesting preceding reproduction (e.g., Zipkin et al., 2009;
Yakubu et al., 2011; Liz and Ruiz-Herrera, 2012), whereas others
assume it following reproduction (e.g., Sinha and Parthasarathy,
1996; Vandermeer and Yodzis, 1999; Schreiber, 2001; Liz, 2010b).
There is a prevailing view in the literature that the kind of hydra
effect described above (i.e., due to overcompensation) can only
occur if harvesting takes place before reproduction, but not if
harvesting takes place afterwards. For instance, in his seminal
review Abrams (2009, p. 469) concludes: ‘‘What is essential for a
hydra effect is that mortality precedes or is concentrated in the
early part of a strongly density-dependent stage’’. According to this
common belief (see also Seno, 2008; Kokko, 2001), there cannot be
a hydra effect if harvesting takes place after reproduction—a belief
we will show not to be always true.

If we consider the simple case of only two processes like
harvesting and reproduction, their relative temporal order is
actually the same (Åström et al., 1996). For the sake of illustration,
let H and R denote the processes of harvesting and reproduction,
respectively. Now consider the two compositions of harvesting
taking place before and after reproduction, which after three
iterations each give the respective sequences

H R H R H R . . . and R H R H R H . . . :

Obviously, the only difference between these two compositions is
the time of measurement of population size after what we define to
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be one cycle (iteration). Hence, we may expect that the stability
properties of the two compositions are the same, as are the
population sizes after each specific process (Åström et al., 1996).

From a mathematical perspective, however, this argument is
not clear-cut. For certain processes different census timing may
lead to different global behaviour in the population dynamics (we
give an illustrative example in Section 3). In this paper, we provide
rigorous results that the standard harvesting strategies do not
show such ‘global differences’. Hence, the order of events does not
matter for the harvesting strategies considered.

It is noteworthy that we understand ‘harvesting’ in a broad
sense, i.e., as any action removing a part of the population. Hence,
our results can also be interpreted from the point of view of pest
control through pesticides, for example. Moreover, our conclusions
are not limited to harvesting and reproduction specifically, but also
apply to other processes. For instance, the importance of census
timing has been studied and highlighted by Lutscher and Petrovskii
(2008) in the context of spatial dispersal.

One of our main results is that hydra effects can also occur for
harvesting following reproduction. Consequently, hydra effects
can be much more prevalent than previously thought. They just go
unnoticed due to the particular choice of census timing. In order to
remedy such ‘‘hidden’’ hydra effects, we propose a mathematical
framework that helps revealing them. In the discussion, we argue
that hydra effects that are overlooked may lead to wrong
population estimates and misguide management recommenda-
tions.

2. Temporally structured processes

When population dynamics are measured in discrete time, they
can be described by difference equations of the form

xnþ1 ¼ f ðxnÞ;

where xn denotes the population size at the nth time step and
function f the population production in one such time step. It is
customary to choose a time step that has biological meaning, e.g.,
corresponding to generation length. Typically, there is not just only
one process like reproduction taking place within one time step.
Instead, there may be multiple processes like birth, death,
migration, predation, harvesting, etc., some of which can be
combined to give well-known production maps (Ricker, 1954;
Beverton and Holt, 1957; Eskola and Geritz, 2007). If these
processes do not take place simultaneously but sequentially, we
get a composition of the form

xnþ1 ¼ f pð f p%1ð. . . f 1ðxnÞÞÞ ¼ ð f p& f p%1& ' ' ' & f 1ÞðxnÞ;

where the functions fi, i = 1, . . ., p, describe the individual processes.
The relative order of the processes fi thus introduces a temporal
structure within a single time step, with process f1 preceding f2 and
so on.

In general, there are p ! different ways to arrange a sequence of
p processes. However, their relative order differs in (p % 1) ! cases
only. In the remaining sequences, the relative positions are the
same. Åström et al. (1996) have argued that models of processes in
the same relative order (or if all processes are density-indepen-
dent) share the same stability properties. Moreover, population
sizes after each specific process are the same (but population sizes
differ when measured only after a complete cycle because then the
census takes place after different processes and misses out on the
complementing ones in between).

In the following, consider the two processes of reproduction,
described by a production function f, and harvesting, described by
a function h giving the population size that survives harvesting.

There are two possible ways to arrange them in a sequence:

xnþ1 ¼ f ðhðxnÞÞ; (2.1)

xnþ1 ¼ hð f ðxnÞÞ; (2.2)

where the former one can be interpreted as harvesting before
reproduction and the latter one as harvesting after reproduction.
As pointed out before, however, in iterations of both models the
relative order of the two processes stays the same, as each iteration
is simply a sequence of ‘. . ., reproduction, harvesting, reproduction,
harvesting,. . .’ and so on. That is, each harvesting process follows as
well as precedes a reproduction process. The difference between
model (2.1) and (2.2) is just when we census the population,
namely either after reproduction or harvesting, respectively. It
therefore seems more appropriate to talk about the timing of
population census rather than the timing of harvesting.

Furthermore, following the argument by Åström et al. (1996),
we may expect that there is no qualitative difference between the
two models and, if population sizes were censused after each
individual process, no quantitative difference either. In the next
section, however, we redraw an example from the literature
illustrating that this is not always the case. This constitutes an
unsatisfying situation, because we cannot be sure that the
dynamics of the two models are equivalent.

For example, if f is one of the usual overcompensatory
population maps like the scaled Ricker model, i.e.

f ðxÞ ¼ x erð1%xÞ; r > 0; (2.3)

and h describes the population surviving constant effort harvest-
ing, where we remove a constant fraction d of the population, i.e.

hðxÞ ¼ x ð1 % dÞ; d > 0; (2.4)

then it is well-known that model (2.1) of ‘taking the census after
reproduction’ can exhibit the hydra effect. The arising question is
whether or not model (2.2) of ‘taking the census after harvesting’
exhibits the same dynamics, including the hydra effect.

In this paper, we will provide proof that hydra effects indeed
occur in both models, but that we cannot always measure them
due to the choice of census timing. This is illustrated in Fig. 1. To be
a bit more precise, this situation holds for general overcompensa-
tory population dynamics (for which the Ricker model is an
example) and the following three harvesting strategies: (i)
constant effort harvesting, also called proportional harvesting or
proportional feedback (PF); (ii) constant yield harvesting, also
called constant feedback control (CF); and (iii) threshold harvest-
ing, also called limiter control (LC). In the next section, however,
we consider an example with target-oriented control leading to a
different result.

3. When the order of two events matters—an example

According to the arguments of Åström et al. (1996), the order of
events does not matter if their relative order is the same. To show
why this statement has to be interpreted with some caution, we
adopt an example from the literature (Cánovas et al., 2006). It
illustrates that a change in the order of events can have dramatic
consequences.

Consider a management strategy that corresponds to target-
oriented control (Dattani et al., 2011; Franco and Liz, 2013). The
population size is changed by the amount H(x) = c(T % x), where T is
the target population size and c the control effort. That is, the
population is harvested if it is beyond the target, and it is restocked
otherwise. Strictly speaking, this particular intervention is not an
exclusive harvesting method, which is why we interpret it in this
section more generally as a control method. Choosing T = 1/2 and
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c = 2/3, the population size after implementing the control
becomes

hðxÞ ¼ x þ HðxÞ ¼ 1
3
ðx þ 1Þ:

Next, assume that the population growth exhibits a strong Allee
effect, for which we consider the following caricature model:

f ðxÞ :¼

0; if x ( 1
3
or x ) 2

3
;

6x % 2; if
1
3
< x ( 1

2
;

4 % 6x; if
1
2
< x <

2
3
:

8
>>>>><

>>>>>:

The graphs of f and h are shown in Fig. 2.
On the one hand, the composition f & h, which corresponds to

‘census after reproduction’, produces the tent map (when
restricted to the interval [0, 1]); see Fig. 3a. This map is chaotic
(Alligood et al., 1997). Actually, periodic orbits are dense and all of
them are unstable, while most solutions fill densely the interval [0,
1]. From an ecological point of view, this high variability may be
undesirable because it bears the risk that perturbations trigger
stochastic extinctions (in case of endangered species) or outbreaks
(in case of pests), cf. Hilker and Westerhoff (2007).

On the other hand, the map h & f, which corresponds to ‘census
after control’, has a positive floor. A large set of initial conditions
are driven after one iteration to the fixed point at x = 1/3, while the
behaviour restricted to the interval (1/3, 2/3) is chaotic. See Fig. 3b.

In this example, the equilibria of f & h are K1 = 0 and K2 = 2/3. The
corresponding equilibria of h & f are h(K1) = 1/3 and h(K2) = 5/9.
Both K2 and h(K2) are unstable and surrounded by chaotic
attractors. Hence, the larger equilibria in each of the models share

the same stability. By contrast, there is a significant difference in
the stability properties of the smaller equilibria. On the one hand,
K1 is unstable (but it attracts the interval [1, 1) in case the
population goes extinct). On the other hand, h(K1) is semi-stable. It
attracts h([1, 1)) = [2/3, 1) and also the interval [0, 1/3] on the left;
notice that h & f is not differentiable at h(K1).

We point out the following difference between the two models:

* If we census the population after control (h & f), we get the
impression that there is a (semi-)stable equilibrium h(K1)
attracting a large range of initial conditions.

(a) (b)

Fig. 1. Time series of population dynamics composed of the two processes harvesting (H) and reproduction (R). Census is taken only after a complete iteration of both
processes. The red points give the equilibrium population sizes which are sampled after specific processes, namely after reproduction in (a) and harvesting in (b). Variability in
population size within a census time step (blue points) is not measured (but see the framework suggested in Section 6). Obviously, qualitative dynamics are the same, and
quantitative differences are only due to the census timing. Note that census after reproduction gives a larger measure of population size than census after harvesting. This is
the reason why hydra effects may be observable (a) or hidden (b). (Colour online.)

0

1/3

1
y

x
0.5 1 1.50

Fig. 2. Graphs of the map f (tent-shaped; red) as a toy model for population
reproduction and the map h (straight line; blue) describing control. The dashed line
represents identity. More details in Section 3. (Colour online.)
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Fig. 3. The order of events matters in this example. The graphs show the maps of (a) harvesting before reproduction, f & h; and (b) harvesting after reproduction, h & f. The maps
are defined in Section 3.
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* However, if we census the population after reproduction (f & h),
we cannot observe a stable population. Instead, the dynamics are
chaotic (with the rare possibility of essential extinction in case
the population size becomes x = 1; note that we have excluded
the interval x > 1 from our considerations).

In short, while the local behaviour around the larger equilibria
remains the same (i.e., chaotic) independently of census timing, there
is a difference in the global behaviour. That is, the dynamics change if
we start from initial conditions further away from the equilibria. On
the one hand, for h & f, the chaotic attractor is the only attractor and it
is approached by all orbits starting from any initial condition within
the interval considered. On the other hand, for f & h, there are two
attracting sets, namely the chaotic one around h(K2) and the semi-
stable equilibrium h(K1). Which one of these is approached depends
on the initial condition. Hence, although the relative order of the two
processes is the same, we may get a fundamentally different
impression of stability (order versus chaos) and population vulnera-
bility (persistence versus extinction).

The reason that the two compositions h & f and f & h are not
topologically conjugated is probably the lack of surjectivity of the
target-oriented control method. Biologically, this can be inter-
preted as follows. Since the control involves restockment
depending on the target, this implies that the population cannot
fall anymore below a certain range of small population sizes. This is
illustrated in Fig. 3 by the map of h being shifted upwards.

In this section, we have argued that different census timing may
lead to different global behaviour. In the forthcoming sections, we
show that this is not the case for standard control methods
(constant yield harvesting, proportional harvesting and threshold
harvesting) with the usual overcompensatory reproduction maps
in population dynamics.

4. Constant yield harvesting

Here we demonstrate that the order of events does not matter
for the strategy of constant-yield harvesting. We will show that the
qualitative dynamics, including global behaviour, are the same
independently of census timing. Quantitative effects will be
investigated in terms of hydra effects.

As before, consider a discrete-time single-species model

xnþ1 ¼ f ðxnÞ; (4.1)

where xn denotes the population density in the nth generation.
Function f is the so-called stock–recruitment relationship, and we
assume that the density dependence is overcompensatory. Typical
examples are the Ricker map (2.3); the quadratic (logistic) map
f(x) = rx(1 % x) with r > 1; and the generalised Beverton–Holt map
f(x) = rx/(1 + xg), r > 1, g ) 1, all given in scaled form. Schreiber
(2001) analysed these three models with a strategy of constant

harvesting after reproduction. A more general model allowing
survivorship of adults was treated in Liz (2010a).

Assume that there is a positive constant quota d, and we census
the population stock after a portion (1 % u)d of this quota has been
removed (u 2 [0, 1]). In the remainder of this Section, we will take u
as a proxy for census timing. We will investigate both the
qualitative and quantitative dynamics as a function of u. Note that
at one extreme, for u = 0, census takes place after the entire quota
has been harvested. This situation has been well-studied for
constant-yield harvesting (Sinha and Parthasarathy, 1996; Van-
dermeer and Yodzis, 1999; Schreiber, 2001; Liz, 2010a). At the
other extreme of the spectrum, for u = 1, census takes place after
reproduction and before any harvesting occurs. Interestingly, this
latter situation has received less attention in the literature.

To get a suitable mathematical setting, we write
H = uH + (1 % u)H. This reflects that the total amount harvested
is made up of a portion removed after census (i.e., before
reproduction) and another portion removed before census (i.e.,
after reproduction). Then the sequence RH RH RH. . . becomes
. . .R[(1% u)H] [uH]R[(1 % u)H] [uH]R[(1 % u)H] . . ..

The above considerations lead to the following harvesting
model:

xnþ1 ¼ ½ f ð½xn % ud,þÞ % ð1 % uÞdÞ,þ; (4.2)

where [x]+ = max {x, 0}.
In Appendix A we provide a rigorous analysis of Eq. (4.2) both

from a qualitative and a quantitative point of view. In the
remainder of this Section, we present the main results.

4.1. Qualitative dynamics

Our first conclusion is that, from the dynamical point of view
(which includes such effects as stability, periodicity, chaos and
collapses), the value of u is irrelevant. That is to say, a different
census timing preserves qualitative behaviour and will not lead to
misleading conclusions with respect to the global dynamics of
population growth. In particular, sudden collapses, which lead to
essential extinction, occur for the same harvesting quotas d (Fig. 4).
The range of values of d causing essential extinction is exactly the
same for all values of u, i.e., independently of the census timing.

4.2. Quantitative dynamics

Having proved that census timing (in form of parameter u) does
not influence the qualitative behaviour of Eq. (4.2), we now direct
our attention to the influence of u on quantitative effects. For this,
we will focus on hydra effects, for which we measure the mean
value of the solutions. To be more precise, we recall some
definitions from Sieber and Hilker (2012) (see also Liz and Ruiz-
Herrera, 2012). Denote by {xn(d, u)}n)0 the solution of Eq. (4.2) for
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Fig. 4. Qualitative dynamics are not affected by census timing. The panels show bifurcation diagrams of model (4.2) for population census (a) after and (b) before the entire
quota has been harvested, i.e., u = 0 and u = 1, respectively. The bifurcation diagrams plot asymptotic population size against harvesting quota. The vertical dashed lines
indicate sudden collapses. Reproduction given by f(x) = xe2.6(1%x). Note that the diagram for u = 0 was first shown by Sinha and Parthasarathy (1996) and Schreiber (2001).
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given parameters d ) 0 and u 2 [0, 1] as well as an initial condition
x0 ) 0 .

Definition 4.1. The mean value map is defined as the function
f : M - [0, 1) - [0, 1] ! [0, 1) given by

fðx0; d; uÞ ¼ lim
n ! 1

1
n

Xn%1

i¼0

xiðd; uÞ;

where M . [0, 1) is the subset of initial conditions for which the
previous limit exists.

Definition 4.2 (Hydra effect).
For a given value of u, the population governed by Eq. (4.2)
experiences a hydra effect if there are an initial condition x0 and
harvesting values d1 < d2 such that f(x0, d1, u) < f(x0, d2, u). The
hydra effect is smooth if f(x0, d, u) is continuous in d on [d1, d2],
otherwise it is non-smooth.

For each census timing u, the mean value map assigns to an
initial condition x0 and a harvesting quota d the asymptotic mean
value of the solution {xn(d, u)}n)0. For example, if Ku(d) is an
equilibrium of Eq. (4.2) then f(Ku(d), d, u) = Ku(d). We emphasise
that f(x0, d, u) provides the mean population size at the moment of
its census, that is, after a portion (1 % u)d of the stock has been
removed. It is hence clear that the asymptotic mean value of the
solutions is an increasing function of u. That is, the mean
population size at census increases the more we harvest before
reproduction and after census.

An analogous observation applies to the hydra effect. This effect
is observed depending on the census timing. Actually, our results in
Appendix A show that a hydra effect is observed according to
Definition 4.2 if (i) growth rates are high and (ii) at least half of the
quota is removed after census (see Proposition A.3).

To have an intuitive idea of why a hydra effect is observed when
the equilibrium is stable, it is useful to provide a geometric
interpretation of the positive equilibria of (4.2). The condition for x
to be a positive equilibrium is

f ðx % udÞ ¼ x þ ð1 % uÞd: (4.3)

The change of variables z = x % ud transforms (4.3) into f(z) = z + d.
This means that the positive equilibria of (4.2) are obtained in the
following way (see Fig. 5).

1 Find the intersection points (x, y), x > 0, between the line y = x + d
and the curve y = f(x). Under conditions (A1)–(A4) in Appendix A,
which correspond to overcompensatory population dynamics,

there is only one point K for d = 0; two points P2 < P1 for
0 < d < d*; one point for d = d*; and no intersection for d > d*.

2 The positive equilibria of (4.2) are obtained as K1
u ¼ P1 þ ud,

K2
u ¼ P2 þ ud.

Notice that Pi ¼ Ki
0 for i = 1, 2.

Since the smaller equilibrium K2
u is always unstable, we will

focus mainly on the response of the larger equilibrium K1
u to

increased harvesting.
Fig. 5 illustrates that the hydra effect is observable when the

population census is taken after reproduction, but remains hidden
if it is taken after harvesting.

For u = 0 (total harvesting before census), we have Ki
u ¼ Pi, i = 1,

2, so that K1
u decreases as the harvesting quota d is increased (see

Fig. 5). At the same time, K2
u increases until K1

u and K2
u collide at

d = d*, and then they disappear after a tangent bifurcation
(Schreiber, 2001). Beyond d*, the population is driven to extinction.

Assuming that f0(K) < 0, the behaviour of K1
u for u = 1 (total

harvesting after census) is completely different. Population size
increases for d 2 ð0; dÞ; then decreases until K1

u ¼ K2
u at d = d*; and

disappears beyond d* (see Fig. 5). The value d is obtained as
d ¼ f ðcÞ % c, where c is the point at which f reaches its maximum
value. Notice that K1

1 and P1 become stable if the harvest quota
exceeds a value d* < d*.

Fig. 6 also suggests that the sudden collapse leading to
extinction at d = d* is even more dramatic when the population
is censused before harvesting, because the population can persist
at intermediate sizes and its size reaches the maximum value f(c)
at a stable equilibrium for harvesting quotas slightly smaller than
the critical one (d ¼ d). Notice that there is a signal for caution, but
it can be barely appreciated in practical situations: the stable
equilibrium starts to decrease when the quota is incremented
beyond the value d. Unfortunately, the difference between d and d*

might be very small.
On the other hand, in the most usual population models

governed by (4.1) there is a crisis bifurcation at some critical point

Fig. 5. Geometric interpretation of the positive equilibria of model (4.2).
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Fig. 6. A hydra effect can be measured for a large range of harvesting quotas (up to d,
which is close to d*) for census before harvesting (u = 1). If the census is taken after
harvesting (u = 0), the hydra effect is hidden and not measured. Solid lines indicate
stable equilibria, dashed lines unstable equilibria. Note that the qualitative
behaviour does not differ between u = 0 and u = 1.
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leading from essential extinction to bistability (see e.g., Vanderm-
eer and Yodzis, 1999; Schreiber, 2001; Liz, 2010a). It is clear that
this bifurcation leads to a non-smooth hydra effect, which is
observable for all u 2 [0, 1].

5. More on the hydra effect

As far as we know, this is the first time that the hydra effect is
studied in a exploited population with constant quota harvesting.
Actually, the hydra effect seems to be a common feature of single-
species discrete-time exploited populations with overcompensa-
tory density dependence, independently of the form of exploita-
tion.

Indeed, if x is the population size, we denote by h(d, x) the
portion of the population remaining after harvesting with some
harvesting strength d. It is natural to assume that h(d, x) is a
continuous function, increasing in the variable x and decreasing in
the variable d. For example, h(d, x) = max {x % d, 0} for constant
quota harvesting, where d denotes the quota; and h(d, x) = (1 % d)x
for proportional harvesting, where d is the harvesting effort. In the
general case, the model with census after reproduction and before
harvesting reads

xnþ1 ¼ f ðhðd; xnÞÞ: (5.1)

The positive equilibria of (5.1) can be found as follows:

1. Find the points P such that h(d, f(P)) = P.
2. The points f(P) are equilibria of (5.1).

Assume that f is unimodal and has a unique fixed point K with
f0(K) < 0. Since h(x) < x (the harvest has to be smaller than the
population size), the eventual solutions P = P(h) of h(d, f(P)) = P
close to K are smaller than K and decrease with further strength of
harvesting. But this fact implies that the points K(h) = f(P(h)) get
larger as harvesting pressure increases due to the overcompensa-
tory effect of the density dependence. A consequence is that a
hydra effect is observable if the equilibrium becomes asymptoti-
cally stable. This is exactly the situation for constant and
proportional harvesting.

5.1. Limiter control

To illustrate our discussion with another example, consider the
limiter control strategy studied in Hilker and Westerhoff (2006).
For a more thorough qualitative analysis of this model, see Sinha
(1994) and Stoop and Wagner (2003).

If intervention takes place after reproduction and before census,
we get the model

xnþ1 ¼ minf f ðxnÞ; Tg; (5.2)

where T is the limiter. Note that the smaller is the value of T, the
larger is the intervention. If M is an upper bound for f, we call
d = [M % T]+, in such a way that increasing d makes the limiter
smaller, which means a bigger harvest.

For simplicity, we assume that f satisfies conditions (A1)–(A3)
in Appendix A, and the unique positive equilibrium K in the
absence of harvesting satisfies f0(K) < 0. In this case h(d,
x) = min {x, M % d} = min {x, T}, and the solutions of h(d, f(z)) = z
are

zðTÞ ¼ K; if T ) K;
T; if T < K:

!

It is clear that z(T) is the only positive equilibrium of (5.2) for each
value of T, and z(T) is a nondecreasing function. This is illustrated in
Fig. 7a. Note that a hydra effect is not observable and remains
hidden when the population is stable. (If the population is
unstable, there may be a hydra effect due to altered population
cycles, cf. Hilker and Westerhoff (2006), Abrams (2009).)

On the other hand, if intervention occurs before reproduction
and after census we have

xnþ1 ¼ f ðminfxn; TgÞ: (5.3)

Positive equilibria of (5.3) are obtained as

KðTÞ :¼ f ðzðTÞÞ ¼ K; if T ) K;
f ðTÞ; if T < K:

!

This means that when T ranges from K to the critical point c, the
equilibrium K(T) is increasing. Moreover, it is easy to prove that
K(T) is globally attracting, thus making the hydra effect observable.
This is illustrated in Fig. 7b, where we can see a hydra effect even
for stable populations. That is, the different census timing has
revealed the hydra effect.

6. Revealing hidden hydra effects—a more suitable
mathematical framework

As we have shown for the usual overcompensatory population
dynamics and harvesting strategies, their temporal ordering does
not matter—neither from a qualitative nor from a quantitative
point of view. However, if the population is censused only after
harvesting, but not after reproduction, the hydra effect may go
unnoticed because it is simply not measured. A straight-forward
approach to resolve this problem is to census the population after
each of the two processes.

Mathematically, this approach can be expressed in the
framework of a 2-periodic difference equation (or, more generally,
if we consider p processes, p-periodic difference equation). For
example, the alternation of proportional harvesting (with effort g)
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Fig. 7. For the strategy of threshold harvesting, a hydra effect at stable populations (here for limiter values T < 1) is (a) hidden for census after harvesting, but (b) observable for
census after reproduction. Note the reversed horizontal axis meaning that harvesting strength increases into the right-hand side direction. The red lines give mean values of
the solutions. The equilibrium becomes asymptotically stable at T = 1 in both cases. Hydra effects in the unstable range (T > 1) are due to a different mechanism, namely that
of altered fluctuations. Models in (a) and (b) are given by Eqs. (5.2) and (5.3), respectively, with f(x) = xe3(1%x). (Colour online.)
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and reproduction (with map f) can be described by

xnþ1 ¼ FnðxnÞ :¼ f ðxnÞ; if n is odd;
ð1 % gÞxn; if n is even:

!
(6.1)

In effect, this means that we choose more fine-grained steps n,
which are not necessarily equidistant in physical time anymore.
Moreover, the population is measured actually twice, which may
come at the expense of additional census effort. However, this
framework of periodic difference equations brings to light the
various processes that are otherwise implicitly hidden in
temporally structured models (see e.g., Åström et al., 1996).

When K is an attracting positive equilibrium of the composition
map p(x) = f((1 % g)x), then Eq. (6.1) has an attracting 2-periodic
orbit {K, (1 % g)K}. A possibility to observe a real hydra effect is
checking if the average

K þ ð1 % gÞ K
2

(6.2)

may be increasing with harvesting effort g. We show this effect in
Fig. 8 for two different harvesting strategies.

In some sense, this problem has been treated by considering a
stage-structured model of juveniles (Jn) and adults (An) with a
strategy of adult-only harvest. If K increases with g, then there is a
hydra effect in the adult population (An). And if the average
increases with g as well, then there is a hydra effect in the total
population (Jn + An). A hydra effect in Jn does not occur. See, for
example, Zipkin et al. (2009) and Liz and Pilarczyk (2012).

Interestingly, the issue of census time can be considered also in
the framework of the Clark model (Clark, 1990, p. 198). He distin-
guishes between the parent stock, P(n), and recruits, R(n) = f(P(n)),
in such a way that a model for constant harvesting H leads to

Pðn þ 1Þ ¼ RðnÞ % H ¼ f ðPðnÞÞ % H;
Rðn þ 1Þ ¼ f ðPðn þ 1ÞÞ ¼ f ðRðnÞ % HÞ:

Thus, a hydra effect is observed if we census recruits (i.e., after
reproduction), but it is hidden if we census the parent stock (i.e.,
after harvesting).

The framework suggested above seems particularly suitable for
another harvesting strategy, namely that of periodic harvesting.
For the Neotropical palm species Euterpe edulis, for instance, it is
recommended that populations in the Brazilian Atlantic Forest
recover after harvesting (Reis et al., 2000). This can be modelled by
harvesting a population not every other step as in Eq. (6.1), but only
every kth step (cf. Freckleton et al., 2003):

xnþ1 ¼ FknðxnÞ :¼ f ðxnÞ; if n is not a multiple of k;
ð1 % gÞxn; if n is a multiple of k;

!

where we assume proportional harvesting preceding reproduction.
This model has been recently analysed by Braverman and Liz
(2012); in particular, it has been proved that a globally stable
positive equilibrium of the map p(x) = f((1 % g)x) typically leads to
a globally attracting k-periodic solution of the nonautonomous
difference equation xnþ1 ¼ FknðxnÞ.

7. Discussion and conclusions

While differential equations are well-suited to model popula-
tion dynamics with simultaneously occurring processes, difference
equations can deal with those processes that take place
sequentially (Boyce et al., 1999). In fact, the temporal structure
of events has been recognised to be an important determinant of
population dynamics (Åström et al., 1996; Jonzén and Lundberg,
1999; Kokko and Lindström, 1998; Kokko, 2001). Somewhat
contrary to this realisation, we have shown in this paper that the
order of events does not matter if there are two processes only like
reproduction and harvesting.

While this has already been suggested by Åström et al. (1996), a
simple example illustrates that it is not universally true (cf.
Section 3). For the usual population dynamic maps and exploita-
tion strategies, however, we have rigorously proved that there are
no qualitative differences in stability properties, and that
quantitative differences only arise due to the mere fact of a
different time of population census. Actually, the question of one
process taking place before or after the other one boils down to the
question when the population is sampled. This can have profound
consequences as to whether or not phenomena like hydra effects
can be observed.

7.1. Hidden hydra effects and their implications

When the order of events does not matter qualitatively or
quantitatively, this implies that hydra effects occur independently
of the temporal structure of processes. In particular, this holds for
hydra effects in stable populations (i.e., due to the mechanism of
overcompensation and mortality in temporally structured popula-
tions). Until now, it was believed that hydra effects in such
populations require harvesting to precede reproduction (Kokko,
2001; Seno, 2008; Abrams, 2009). Conversely, harvesting after
reproduction would not lead to a hydra effect. For instance, Abrams
(2009, p. 467) expressed this as follows: ‘‘The lack of a hydra effect
in stable discrete generation models with mortality following
density dependence is a consequence of the fact that density
dependence cannot counteract such mortality’’. Seno (2008, p. 65)
also concluded that a hydra effect for harvesting after reproduction
‘‘never occurs’’ (highlighting in italics font used by the original
author).
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Fig. 8. The framework of periodic difference equations can reveal hidden hydra effects. The diagrams show the average population size, given by Eq. (6.2), for two different
harvesting strategies: (a) proportional harvesting h(x) = (1 % g)x with g 2 [0, 1]. The 2-periodic orbit {K, (1 % g)K} is asymptotically stable for g 2 [g*, g*), where
g* = 1 % e%1 / 0.6321 and g* = 1 % e%3 / 0.95. (b) limiter control h(x) = min {x, T}, with T ranging between T = 1 and T = 0, for which the 2-periodic orbit is globally attracting. In
both cases, a hydra effect is still observed. Population dynamics follow the Ricker map f(x) = xe3(1%x).
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Obviously, hydra effects do take place for harvesting following
reproduction as well, but this happens early on within a time step.
The increase in population size is obscured by the timing of
population census just after harvest. Hence, the actual population
increase after reproduction remains ‘hidden’ even though, taken
over the entire time interval and not just at the census time, the
population size was greater due to the hydra effect.

Consequently, hydra effects are much more common than
previously thought. This may have profound implications for the
management of populations. The presence of a hydra effect, even a
hidden one, means that managers can achieve two goals
simultaneously, namely an increase in the yield as well as in the
remaining population size (cf. Kokko, 2001). These two goals
typically exclude each other in a Pareto-optimal sense (Bunn,
1984), where an increase in harvest optimises the yield but reduces
the remaining population size (or vice versa). If the hydra effect is
hidden, managers may miss out on the opportunity to maximise
both yield and population size rather than just one of them.

While this appears good news for the sustainable exploitation
of renewable resources, hidden hydra effects may prove fatal in
other situations. Harvesting often aims at controlling or eradicat-
ing pest species. Examples include non-indigenous invasive
species or agricultural pests (Hone, 2007). In many cases,
harvesting is also established on the damaging effect of
unharvested populations (Robinette et al., 1977). Too high
population densities of deer, for instance, can lead to overgrazing
and an increased number of road accidents (Putman and Moore,
1998). In the presence of hydra effects, however, the control effort
can ‘backfire’ (Zipkin et al., 2009). If the hydra effect is hidden, the
resurgence of the pest additionally goes unnoticed as it escapes
population census. This may be particularly devastating for the
control of invasive species, as their early detection is considered
crucial (Simberloff, 2003).

If we interpret harvesting mortality a bit more widely as
brought about by predators, hydra effects lend additional support
in favour of predator protection programmes. The prey individu-
als that are removed by an increased predator population are
more than compensated for. In fact, the mortality is over-
compensatory as additional predation leads to an increased prey
population size.

This is related to the concept of a ‘doomed surplus’, where
predation/harvesting removes those individuals that would die
anyway (Errington, 1934, 1971). In such a case, one speaks of
compensatory mortality as opposed to the case of additive
mortality, where harvesting reduces population size. In the case
of over-compensatory mortality (hydra effect), the doomed
surplus actually turns out to be a burden—the population benefits
upon its removal. This is underlined by a reproductive value that is
negative rather than positive (Kokko and Lindström, 1998).

The question of when to hunt/harvest and whether harvesting
mortality is additive or compensatory, continues to be discussed in
the literature (e.g., Pöysä et al., 2004; Milner et al., 2011;
Sandercock et al., 2011). The answer for a specific population

probably lies in the details. Nevertheless, the concept of
compensatory density-dependence is key for the sustainable
harvesting of populations (Nicholson, 1991; Bartmann et al.,
1992). The recent insight that harvesting mortality can be over-
compensatory (Jonzén and Lundberg, 1999; Kokko, 2001) illus-
trates the complexity of system behaviour and that we are still in
the process of trying to understand the consequences of harvest
(Hilborn et al., 1995; Milner-Gulland and Mace, 1998; Struhsaker,
1998; Boyce et al., 1999).

7.2. Generality of hydra effects

Hydra effects can occur for any kind of harvesting. This should
be obvious by now, but, as far as we know, has never been stated
explicitly. In the literature, harvesting strategies of proportional
harvesting prevail (Seno, 2008; Abrams, 2009). The essential point,
however, is to reduce population size such that the reproductive
output increases as a consequence of overcompensatory density-
dependence, cf. our mathematical arguments in Section 5. The
particular strategy of harvesting is not important, as long as the
population is sufficiently reduced.

For unstable populations, there can be another kind of hydra
effect. Harvesting (and similarly augmentation) transition the
population onto a different cycle, which can have an increased
average population size. This kind of hydra effect has been long
known to occur also for harvesting following reproduction (Hilker
and Westerhoff, 2006; Seno, 2008; Abrams, 2009). An example can
be seen in Fig. 7 for limiter control.

Table 1 lists a number of harvesting strategies that have been
reported to lead to hydra effects. This collection is not meant to be
exhaustive, but to illustrate that population removal per se (rather
than its specific way of implementation) is important in triggering
hydra effects. Please note that most references in Table 1 do not
distinguish between the different types of hydra effect. It is also
worth noting that the majority of these papers do not explicitly
mention ‘hydra effect’ as this term has only been recently coined
by Abrams (2009).

7.3. Uncovering hidden hydra effects and temporal structure

We have proposed the mathematical framework of periodic
difference equations to ‘elucidate’ hidden hydra effects. In some
sense, this approach corresponds to the suggestion that ‘‘one has to
sample the population at least as many times a year as there are
sequential density-dependent processes [. . .]’’ (Åström et al., 1996,
p. 180). However, there can be biological constraints when
measurements are possible. Lutscher and Petrovskii (2008) discuss
a few of such examples. For instance, it might be impossible to
census juveniles of a certain species. Hence, in such cases, there
might be hydra effect, but it could not be observed.

It has been argued before (Kokko and Lindström, 1998) that
the mere relationship between two census time points does not
always suffice to reflect the actual response of populations to

Table 1
Population models with harvesting leading to hydra effects.

Control strategy Reference

Proportional harvesting Kokko and Lindström (1998),a Seno (2008), Abrams (2009), and Liz and Ruiz-Herrera (2012)
Constant harvesting Kokko (2001)b

Threshold harvesting Hilker and Westerhoff (2006)
Target-oriented control Dattani et al. (2011) and Franco and Liz (2013)
Proportional harvesting in models

with sequential density-dependence
Jonzén and Lundberg (1999)

Proportional harvesting in stage-structured models Zipkin et al. (2009) and Liz and Pilarczyk (2012)

a See their Fig. 3A on p. 299.
b See her Fig. 2B on p. 144.
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perturbations. The approach suggested in this paper releases the
system from the choice of census timing.

On the downside, more census data require increased sampling
effort. From a practical point of view, this may be costly or
impossible (e.g., due to expensive labour, remote locations or
extreme seasons).

On the upside, if there is refined census data available, we could
think about using not only their plain averages, but to give
population sizes different weights at different points in time. This
could reflect the time length of certain processes or attribute
priorities to some events from a management point of view.

Periodic difference equations have been used to model the
effect of seasonality on population growth (Kot and Schaffer,
1984). In order to assess whether seasonal fluctuations are
deleterious or advantageous for the population, the average of
2-periodic difference equations has been studied intensively
(Costantino et al., 1998; Henson and Cushing, 1997; Cushing
and Henson, 2001; Kon, 2005; Elaydi and Sacker, 2006). More
recent papers studying periodic difference equations in the context
of population dynamics are by Elaydi et al. (2011) and Pötzsche
(2013). A similar framework has been used to investigate
Parrondo’s paradox (Peacock-López, 2011).

7.4. Mathematical results

It has been argued before that the temporal structure of events
does not matter if their relative order is the same (Åström et al.,
1996). This is convincing when harvesting is described mathemat-
ically by a bijective function (for example, h(x) = (1 % g) x for
proportional harvesting). If the map h is not an homeomorphism,
however, then it is not so clear (from a mathematical point of view)
that the dynamics of f(h(x)) and h(f(x)) are the same.

An example where this is not the case is given in Section 3. The
dynamics of f(h(x)) and h(f(x)) are still equivalent regarding
periodic points and their stability—but there are ‘global differ-
ences’ due to the lack of surjectivity of the composition. What are
the practical consequences of these global differences? While
populations starting close to the equilibrium share its dynamical
behaviour, orbits starting further away may be attracted to a
different dynamical regime. This may affect aspects such as
essential extinction, which is basically a global phenomenon
(Sinha and Parthasarathy, 1996; Schreiber, 2001; Liz, 2010a).

Admittedly, examples like the one in Section 3 are somewhat
pathologic, but actually not too unrealistic. The modified tent
map is a commonly employed toy model for population
dynamics with strong Allee effect. The target of 1/2 in the
harvesting strategy is close to the population’s carrying capacity
(cf. Fig. 2) and may reflect a typical situation in practice (Dattani
et al., 2011). The control effort of c = 2/3, however, could be
considered quite high.

Nevertheless, the example reveals potential pitfalls. As for
qualitative effects, one census time could give us the impression
that the dynamics is, for example, chaotic, while sampling at a
different time we could think that the population is essentially
stabilised. Of course, this difference only appears if the composi-
tions f(h(x)) and h(f(x)) display different dynamics (as in the
example of Cánovas et al., 2006). Regarding quantitative effects, we
discuss these differences in the framework of the hydra effect
(placing special emphasis on possibly misleading conclusions
derived from sampling the population only once). Thus, it makes
sense to investigate this problem for the usual harvesting
strategies.

If we restrict our attention to hydra effects for stable
populations, then it is easy to argue why proportional harvesting,
constant yield harvesting and threshold harvesting preserve
stability of the equilibria independently of the order of events.

For proportional feedback, since h is a homeomorphism, both
compositions are topologically conjugated, and hence they share
the same dynamics (different observation times only lead to
quantitative differences). For constant yield harvesting, this
property is not mathematically evident because h is not one-to-
one, so we provide some rigorous results. It may be worth noting
that constant yield harvesting is not injective when the
population becomes extinct. Hence, it makes sense that the
qualitative features are the same. The only not so smooth case
is threshold harvesting, which is neither one-to-one nor
surjective.

Actually, all these methods preserve stability in the sense that if
K is a stable smooth equilibrium of f(h(x)) with sink of attraction (a,
b) then h(K) is a stable equilibrium of h(f(x)), and its sink of
attraction contains h((a, b)).

7.5. Limitations and prospects

In this paper, we have restricted ourselves to simple models
with two processes only, namely reproduction and harvesting.
That the order of two events does not matter has been recognised
before, e.g., for reproduction and predation (Åström et al., 1996,
after Crawley, 1992).

Real situations, however, can be more complex. Reproduction
could be split into separate birth and death processes (see Jonzén
and Lundberg, 1999), or we could consider additional processes,
seasonal variations or dynamics taking place in different habitats
(which seems relevant for migratory species like waterfowl).
Future work could consider models where the temporal order of
these processes actually matters, i.e., when there are more than
two processes.

Furthermore, some of the processes may not be instantaneous
(e.g., natural mortality or continuous harvesting). Kokko and
Lindström (1998) investigated the timing of harvesting in this
context. Their model allows for continuous harvesting throughout
certain hunting seasons. This spurred discussion of not only the
order of events, but also of their duration and the case when
density-dependence is not instantaneous (reviewed in Ratikainen
et al., 2008).

Note that there is some similarity to periodic matrix models.
Cyclic permutations give the same population growth rate (i.e.,
dominant eigenvalue), but may produce different yields (Double-
day, 1975). This roughly corresponds to the situation where the
order of events does not matter and quantitative differences are
due to census timing. Non-cyclic permutations, by contrast, do not
preserve the population growth rate (Caswell, 2001; Mertens et al.,
2006). Some of the harvesting and control methods considered
here assume that the amount of the population removed (or
added) depends on the current population size (e.g., proportional
feedback or target-oriented control). This implies that the
population can be censused for the intervention or that the
intervention takes place with a constant effort and is proportional
to the population size. Note that there are some conditional
harvesting strategies, however, where interventions occur only if a
certain threshold is passed. Costa and Faria (2011) and Franco and
Perán (2013) consider such threshold harvesting strategies, but
obtain different results even though they consider reproduction
and harvesting only. The reason is that the conditional harvesting
imposes a threshold, which effectively implements a third process
(cf. Franco and Perán, 2013).

Our results concern populations at a stable equilibrium. This
means that we deal with hydra effect that arise from the temporal
separation of mortality and density dependence (Abrams, 2009). A
different question is when the population cycles. In this case, the
average of a, say, 2-periodic attractor for the harvesting model can
increase even if we assume harvesting occurs after reproduction
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(and we measure the population after harvesting). Little has been
done analytically for this type of hydra effects.
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Appendix A

Here we analyse the model for constant yield harvesting (4.2) from

the main text.

We list the main assumptions on the reproduction map, following

Schreiber (2001).

(A1) f : [0, 1) ! [0, 1) is continuous, f(0) = 0, f(x) > 0 for all x 2 (0,
L), and f(x) = 0 for all x ) L, where 0< L ( 1.

(A2) f has only two nonnegative fixed points x = 0 and x = K > 0,
f(x) > x for 0 < x < K, and f(x) < x for x > K.

(A3) f restricted to (0, L) is twice differentiable and has a unique
critical point c < K in such a way that f0(x) > 0 for all x 2 (0, c),
f0(x) < 0 for all x > c, and f00(x) < 0 on (0, c).

(A4) f restricted to (0, L) is three times differentiable, and
(Sf)(x) < 0 for all x 2 (0, c) [ (c, L), where

ðSf ÞðxÞ ¼ f 000ðxÞ
f 0ðxÞ

% 3
2

f 00ðxÞ
f 0ðxÞ

" #2

is the Schwarzian derivative of f.

We emphasise that many usual population models meet

assumptions (A1)–(A4) (see e.g., Schreiber, 2001; Liz, 2010b).

A.1. Qualitative effects of harvesting

For simplicity, we denote

huðxÞ ¼ ½x % ud,þ ¼ maxfx % ud; 0g;

so Eq. (4.2) can be rewritten as

xnþ1 ¼ h1%uð f ðhuðxnÞÞÞ :¼ FuðxnÞ: (A.1)

Since h0(x) = x, for all x ) 0, in the cases u = 0 and u = 1 we
have, respectively, F0(x) = h1(f(x)), F1(x) = f(h1(x)), where h1(x) =
max {x % d, 0}.

Since f(c) is the maximum value of f, it is clear that if f(c) ( (1 % u)d
then Fu(x) = 0 for all x ) 0. Otherwise functions Fu satisfy the following

property (see Fig. A.9).

Proposition A.1. Assume that f satisfies (A1)–(A4), and
f(c) > (1 % u)d. Then there is an interval [au, bu] . (ud, L + ud) such
that Fu(x) > 0 if and only if x 2 (au, bu). Moreover, Fu has a unique
critical point cu = c + ud 2 (au, bu) and at most two positive fixed points
for all u 2 [0, 1].

Proof. Since f(hu(c + ud)) = f(c) > (1 % u)d, we have
Fu(cu) = f(c) % (1 % u)d > 0 and F 0uðcuÞ ¼ f 0ðcÞ ¼ 0. By continuity,
there are two points au, bu such that 0 < au < cu < bu < L, and

Fu(x) > 0 if and only if x 2 (au, bu). By (A3), F 0uðxÞ > 0 on (au, cu),
and F 0uðxÞ < 0 on (cu, bu). Thus, cu is the only critical point of Fu.

Since Fu is decreasing on (cu, bu), it is clear that Fu cannot have
more than one fixed point in that interval. On the other hand,
since F 00u ðxÞ < 0 on (au, cu), there are at most two fixed points on
(au, cu). If there are two fixed points K1

u > K2
u in that interval, then

F 0uðK
1
u Þ < 1 and F 0uðxÞ < 1 for all x 2 ðK1

u ; cuÞ. This means that
Fu(x) < x for all x > K1

u , and therefore K1
u ; K2

u are the only positive
fixed points of Fu. &

It is clear from this proposition that if f satisfies (A1)–(A4) then Fu
meets assumptions (A1)–(A5) in Schreiber (2001, Theorem 1). This

means that the dynamics of (4.2) falls in one of the following three

categories:

* Extinction: The unique fixed point is x = 0, and it attracts all
solutions of (4.2).

* Essential extinction: Not all solutions of (4.2) converge to zero, but
a randomly chosen initial density leads to extinction with
probability one.

* Bistability: There are two attractors: A1 ¼ f0g and A2: The basin
of attraction of A2 is bounded away from zero and it contains
the initial values of the population for which it persists
indefinitely.

Remark A.1. There are three possibilities for the fixed points
of Fu:

1. The map Fu has no positive fixed points if Fu(x) < x for all x > 0.
2. The map Fu has exactly one positive fixed point K1

u if Fu(x) < x for
all x > 0, except for K1

u .
3. The map Fu has exactly two positive fixed points otherwise. In

this case, we denote them by K1
u > K2

u > 0:

A key property is that the only factors that determine the category

for each particular map Fu are the number of fixed points of Fu and the

signs of Fu(cu) % cu and F2u ðcuÞ % F3u ðcuÞ, where cu is the critical point of

Fu and Fku represents k iterations of Fu, that is,

Fku ¼ Fu& ' ' ' &Fu|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k

:

To be more precise, we state the following consequence of Lemma
1 and Theorem 1 in Schreiber (2001). Following the notation in
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Fig. A.9. Graphs of the maps f(x) and Fu(x), with f(x) = xe3(1%x), d = 1, u = 0.5. The
positive fixed points of Fu are determined by the intersections of the line y = x and
the graph of Fu.
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Schreiber (2001), we denote K0
u ¼ F%1

u ð pÞ, where p is the smallest
positive equilibrium of Fu.

Proposition A.2. Assume that f satisfies (A1)–(A4). Then:

1. (Extinction) If Fu(x) < x for all x > 0 then limn ! 1 Fnu ðxÞ ¼ 0, for all
x ) 0.

2. (Bistability)
(a) If Fu(x) ) x for some x > 0, and Fu(cu) ( cu then K1

u is attracting.
The basin of attraction of K1

u is the interval Ju ¼ ðK2
u ; K0

uÞ, if there
are two positive equilibria, or ½K1

u ; K0
u , if there is exactly one

positive equilibrium. In both cases, the set ½0; 1Þn½ p; K0
u , is

attracted by 0.
(b) If Fu(cu) > cu and F2u ðcuÞ < F3u ðcuÞ; then Fu has two positive fixed

points. The interval Iu ¼ ½F2u ðcuÞ; FuðcuÞ, is invariant, attracting,
and contains K1

u . The basin of attraction of Iu is Ju, and 0 attracts
the set ½0; 1Þn½K2

u ; K0
u ,.

3. (Essential extinction) If Fu(cu) > cu and F2u ðcuÞ > F3u ðcuÞ, then the
solution of (4.2) corresponding to a randomly chosen initial
condition converge to zero with probability one.

Based on Proposition A.2, we aim to show that, for every fixed

value of d, the dynamical behaviour of Fu and F0 is equivalent for all

u 2 (0, 1].

Theorem A.1. Assume that f satisfies (A1)–(A4). If for a fixed value of
d ) 0 one of the situations described in Proposition A.2 holds for F0,
then the same situation holds for Fu, for every u 2 (0, 1]. In case of
bistability, if Iu and Ju are the intervals defined in Proposition A.2, the
following relations hold: Iu = I0 + ud, and Ju = J0 + ud, for all u 2 (0, 1].
Moreover, if {xn}n)0 is an orbit of F0 starting at a point x0 2 J0, then the
orbit of Fu starting at x0 + du 2 Ju is {xn + du}n)0. In particular, the
dynamics of Fu and F0 on the corresponding nontrivial attractors are
the same for all u 2 (0, 1].

Proof. We need some auxiliary results. Their proofs are elemen-
tary and thus we only include some of them.

Lemma A.1. For all u 2 [0, 1] and all x ) 0, hu(h1%u(x)) = h1(x).

Lemma A.2. Let cu = c + ud be the critical point of Fu. Then, hu(cu) = c,
for all u 2 [0, 1] .

Lemma A.3. The inequality Fu(x) < x holds for all x > ud if and only if
F0(x) < x is true for all x > 0 (notice that Fu 1 0 on [0, ud]).

Lemma A.4. For all u 2 [0, 1] and all x ) 0, hu(Fu(x)) = F0(hu(x)).

Lemma A.5. For all u 2 [0, 1], and all integer n ) 1,
huðFnu ðcuÞÞ ¼ Fn0 ðcÞ.

Proof. For n = 1, we have, by Lemmas A.2 and A.4,

huðFuðcuÞÞ ¼ F0ðhuðcuÞÞ ¼ F0ðcÞ:

For n = 2, we get, by Lemma A.1,

huðF2u ðcuÞÞ ¼ ðhu&h1%u& f &hu&h1%u& f &huÞðcuÞ ¼ ðh1& f &h1& f ÞðcÞ

¼ F20 ðcÞ:

Using the same arguments, we arrive at

huðFnu ðcuÞÞ ¼ ðh1& f ÞnðhuðcuÞÞ ¼ Fn0 ðcÞ;

for every n ) 2. &

Lemma A.6. For all u 2 [0, 1], Fu(cu) > cu if and only if F0(c) > c.

Proof. Since cu = c + ud > ud, we have, by Lemma A.5,

FuðcuÞ > cu , huðFuðcuÞÞ > huðcuÞ , F0ðcÞ > huðcuÞ ¼ c:

&

Lemma A.7. For each u 2 [0, 1], let Iu ¼ ½F2u ðcuÞ; FuðcuÞ,: Then
hu(Iu) = I0.

Proof. It is a straightforward consequence of Lemma A.5. &

Lemma A.8. For all u 2 [0, 1], F2u ðcuÞ < F3u ðcuÞ if and only if
F20 ðcÞ < F30 ðcÞ.

Proof. By Lemma A.5, it is clear that F20 ðcÞ > 0 if and only if
F2u ðcuÞ > du. Thus, using Lemma A.5 again, it follows that

F2u ðcuÞ < F3u ðcuÞ , huðF2u ðcuÞÞ < huðF3u ðcuÞÞ , F20 ðcÞ < F30 ðcÞ:

&
Now we can prove Theorem A.1. Lemmas A.3, A.6 and A.8

imply that the classes of dynamics from Proposition A.2 occur
for the same values of the parameter d, regardless of the value of
u 2 [0, 1].

Lemmas A.4 and A.7 imply that the restrictions of Fu and F0 to Iu
and I0, respectively, are topologically conjugated (see e.g.,
Alligood et al., 1997). In particular, hu maps orbits of Fu into
orbits of F0.

The relationship Iu = I0 + ud follows from Lemma A.7, so it only
remains to prove that Ju = J0 + ud. Since we already know that
K2
u ¼ K2

0 þ ud, we have to prove that K0
u ¼ K0

0 þ du. Indeed, since
FuðK0

0 þ duÞ ¼ h1%uð f ðK0
0ÞÞ, we get:

huðFuðK0
0 þ duÞÞ ¼ h1ð f ðK0

0ÞÞ ¼ F0ðK0
0Þ ¼ K2

0 ) FuðK0
0 þ duÞ

¼ K2
0 þ du ¼ K2

u :

Hence, by the definition of K0
u , it follows that K0

u ¼ K0
0 þ du: &

A consequence of Theorem A.1 is that the length of the interval Iu
does not depend on u (but it is shifted up as u is increased from u = 0 to

u = 1). This gives the main result that the qualitative dynamics are the

same independently of the census timing.

A.2. Quantitative effects of harvesting

It is not difficult to prove that the population governed by Eq. (4.2)

experiences a hydra effect in the case u = 1. Actually, the following

result holds:

Proposition A.3. If (A1)–(A4) hold and f0(K) < %1, then the popula-
tion governed by (4.2) experiences a smooth hydra effect for all u 2 (1/
2, 1]. If %1 ( f0(K) < 0 and f00(K) < 0, then there is a hydra effect if
u 2 (1/(1 % f0(K)), 1].

Proof. Denote by K1
u the largest fixed point of Fu. The point x ¼ K1

u
satisifes the equation

f ðx % udÞ % ð1 % uÞd % x ¼ 0:

If %1 ( f0(K) < 0, then the positive equilibrium K of f is
asymptotically stable. Moreover, since f00(K) < 0, it follows from
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(A3) and (A4) that f00(x) < 0 on (0, K). Hence, F 0uðK
1
u Þ ¼

f 0ðK1
u % udÞ ¼ f 0ðK1

0 Þ ) f 0ðKÞ, because K1
0 ¼ P1 < K. Therefore, K1

u
is asymptotically stable, too. Since for an initial condition j in the
basin of attraction of K1

u the mean value f(j, d, u) is K1
u , it is enough

to prove that @K1
u =@d > 0 at d = 0. At d = 0, we get, using implicit

differentiation,

@K1
u

@d
¼ u f 0ðKÞ þ 1 % u

f 0ðKÞ % 1
> 0 , u > u0 ¼ 1

1 % f 0ðKÞ
:

Next we consider the case when f0(K) < %1. It is easy to prove
that there is a harvesting quota d1 > 0 for which the equilibrium K1

u
of Fu satisfies F 0uðK

1
u Þ ¼ %1, and K1

u is asymptotically stable for all
d 2 [d1, d*). Using implicit differentiation as before, we get that, at
d = d1,

@K1
u

@d
¼ u f 0ðKu % d1uÞ þ 1 % u

f 0ðKu % d1uÞ % 1
¼ %1 þ 2u

2
> 0 , u >

1
2
:

&

Proposition A.3 states that in many cases constant yield harvesting

leads to an observable hydra effect when at least half of the quota is

removed before reproduction (and after population census). This is

illustrated for u = 0.7 in Fig. A.10, where the bifurcation diagram

shows a hydra effect occurring at d = d1. Fig. A.10 also displays a crisis

bifurcation leading to essential extinction at d = d*.
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Fig. A.10. Magnification of the bifurcation diagram of model (4.2) with
constant yield harvesting. A smooth hydra effect occurs on an interval (d1,
d1 + e) for some e > 0. The dashed line corresponds to the positive equilibrium
K1
u at the point d1 = 1.36423, at which there is a period-halving bifurcation

leading to an asymptotically stable equilibrium. A collapse leading the
system to extinction occurs at d* = 1.5549. Parameter values: u = 0.7 and
f(x) = xe2.6(1%x).
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