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a b s t r a c t

Consider a chaotic difference equation xn+1 = f (xn). We focus on the problem of control of
chaos using a prediction-based control (PBC)method. If f has a unique positive equilibrium,
it is proved that global stabilization of this equilibrium can be achieved under mild
assumptions on the map f ; if f has several positive equilibria, we demonstrate that more
than one equilibrium can be stabilized simultaneously.We also show that it is still possible
to stabilize an unstable equilibrium using a strategy of control with pulses, that is, the
control is only applied after a fixed number of iterations. We illustrate our main results
with several examples, mainly from population dynamics.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilization of chaotic systems is an area of research experiencing a fast growth in the past years [1,2]. There seems
to be a general agreement in dividing the methods for control of chaos into two main groups. The first one is inspired by
the seminal paper of Ott et al. [3], and it relies on the adjustment of an intrinsic parameter of the system to stabilize one
of the infinite number of unstable periodic orbits embedded in a chaotic attractor. Two admitted drawbacks of this kind of
techniques are that a previous knowledge of the trajectory of the orbit to stabilize is needed, and that it may take a long
time to reach such an orbit (resulting in an undesired large number of chaotic transients).

In this paper, we focus our attention on a control technique belonging to a second group of methods based on external
perturbations [4]. Among them, we mention the methods more relevant to our discussion, namely, the constant feedback
method (CF) [5], the proportional feedback method (PF) [6,7], and the prediction-based control (PBC) [8–10].

An important remark is that all these methods can be considered as parametric control methods, since they are based
on the introduction of a new parameter in the dynamical system, in such a way that perturbations of this parameter can
stabilize the chaotic attractor.

For the sake of completeness and future reference in this paper, we give a brief review of these methods for the one-
dimensional difference equation

xn+1 = f (xn), (1.1)

where f is a continuous real function.
Constant feedback method (CF). The constant feedback method of control proposed in [5] involves adding a new real
parameter c in the form of a constant feedback; thus system (1.1) becomes

xn+1 = f (xn) + c.
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If (1.1) is amodel for population dynamics, values of c greater than zeromean that a constantmigration enters the population
at every generation, while negative values of the control parameter c mean migration or harvesting at a constant rate. For
recent results and more references concerning this method, see [11–13].
Proportional feedback method (PF). This methodwas introduced in [6]. It involvesmultiplying the state variable by a constant
factor γ > 0 for every p iterations, where p is an integer greater than zero. For the case p = 1, the map f becomes f (γ x)
after the control. The biological interpretation is similar to that of the previous method, since a fraction of the population is
removed if γ < 1,whereas a factor γ > 1means that a positivemigration is added to the population size at each generation.
Recently, a number of analytical results for the stabilization of fixed points and periodic orbits using this control technique
have been proved [7,14,15].
Prediction-based control (PBC). The prediction-based control (or predictive control) was introduced by Ushio and
Yamamoto [10] in order to overcome some limitations of the so-called delayed feedback control [16]. The general form
of this method to stabilize a periodic orbit of (1.1) is written as

xn+1 = f (xn) − α(f k(xn) − xn),

where f k is the kth iteration of f . When k = 1, this method becomes

xn+1 = f (xn) − α(f (xn) − xn) = αxn + (1 − α)f (xn) := Fα(xn). (1.2)

This scheme has proved to be very efficient and robust to stabilize an unstable equilibrium of (1.1), see [8,9,17].
In this paper, we will restrict the range of values of the control parameter α to the interval [0, 1]. Under this assumption,

it is clear that Fα(x) is a convex combination of x and f (x). An important implication, especially when (1.1) is a model of
population dynamics, is the following: assume that Eq. (1.1) is permanent, that is, there exists a compact interval [a, b],
with 0 < a < b, such that all solutions {xn} of (1.1) starting at a positive initial condition x0 satisfy

a ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ b.

Then, the controlled equation (1.2) is permanent too. This is an important difference with other control methods, such as
CF, in which the application of a negative control c can induce an Allee effect or even catastrophe bifurcations, driving the
population to extinction [12,13].

We also note that it is impossible to stabilize an unstable positive fixed point K of (1.1), if f �(K) > 1 using PBC with a
value of α ∈ [0, 1). Indeed, in this case

F �
α(K) = (1 − α)f �(K) + α > 1 − α + α = 1.

A key point which distinguishes PBC scheme from CF and PF is that the former one stabilizes the equilibria of the original
(uncontrolled) system (1.1). Actually, if α �= 1, K is an equilibrium of (1.1) if and only if K is an equilibrium of (1.2).

Our main aim in this paper is to improve the existing analytic results on stabilization of equilibria using the PBC scheme
(1.2) in two directions. On the one hand, we prove that global stabilization is possible for a wide class of maps with a unique
positive equilibrium, avoiding the restrictions in themain result of [8]. On the other hand, we explore the possibility of pulse
stabilization, that is, the control is not applied every iteration, but only after a fixed number of m iterations. This aspect is
very important in practical situations, because sometimes either it is not feasible or it is very costly to apply the control at
each step. That is, we consider the following strategy of control with pulses:

xn+1 =
�
f (xn), if n �= mk,
Fα(xn), if n = mk, k ∈ Z+,

(1.3)

where Fα was defined in (1.2). An important consequence of our results is that it is possible to stabilize an unstable
equilibrium of (1.1) using (1.3) with a positive number m > 1. As we show in Section 3, this goal is impossible to achieve
with CF or PF methods. In the recent paper [14], we proved that an application of the control scheme PF every m steps is
able to stabilize globally a periodic orbit of (1.1) with minimal periodm.

The paper is organized as follows: in Section 2, we prove a result of global stabilization using (1.2) when Eq. (1.1) has a
unique positive equilibrium, generalizing in this way Theorem 1 in [8]. When the map f has several positive equilibria, we
show that there is a range of values of α for which any positive solution of (1.2) converges to an equilibrium. In Section 3, we
address the problem of pulse stabilization, using scheme (1.3). Finally, Section 4 is devoted to the discussion of our results:
we highlight the main conclusions and state some directions for further research.

2. Global stabilization

2.1. A unique positive equilibrium

In this subsection, we consider the case when Eq. (1.1) has a unique positive equilibrium. Our main result establishes
sufficient conditions for the global stabilization of the positive equilibrium using the PBC scheme (1.2). First, we list and
discuss the assumptions for the map f :
(A1) f : [0, ∞) → [0, ∞) is continuous, f (0) = 0, and f (x) > 0 for all x > 0.



Author's personal copy

2194 E. Braverman, E. Liz / Computers and Mathematics with Applications 64 (2012) 2192–2201

(A2) f has only two nonnegative fixed points x = 0 and x = K > 0, f (x) > x for 0 < x < K and f (x) < x for x > K .
(A3) There exists a numberM > 0 such that

����
f (x) − K
x − K

���� ≤ M (2.1)

for any x > 0.

Assuming that Eq. (1.1) models the growth of a population, the positive equilibrium K is called the carrying capacity, which
is the maximum population level naturally sustained by the environment. Conditions (A1)–(A2) have a clear biological
meaning. The first hypothesis implies that the stock size at the next stage depends continuously on the size at the present
stage. The second assumption means that the population increases if its present size is less than the carrying capacity, and
decreases otherwise. The third assumption is not hard to verify. In particular, if f is continuously differentiable and (A1)–(A2)
hold, then (2.1) is satisfied, for example, with

M = max
�

max
x∈[0,2K ]

|f �(x)|, 1
�

,

since |f (x) − K | = |f �(ζ )| |x − K |, where ζ is a point between x and K and |f (x) − K | ≤ |x − K | for x > 2K due to the
inequality 0 < f (x) < x, x > K .

We need the following simple auxiliary result in the proof of the main result of this section.

Lemma 2.1. Let g : [0, ∞) → [0, ∞) be a continuous function satisfying (A1), (A2), and let λ ∈ (0, 1) be a number such that
for any x > 0 either

|g(x) − K | ≤ λ|x − K | (2.2)

or (g(x) − K)(x − K) > 0.
Then any solution {xn} of the equation

xn+1 = g(xn), (2.3)

with x0 > 0, converges to K , that is,

lim
n→∞

xn = lim
n→∞

gn(x0) = K . (2.4)

Proof. For the sequence xn+1 = g(xn) with x0 > 0, there may be two cases: either there exists n0 ≥ 0 such that the sign of
xn − K does not change for n ≥ n0, or there is an infinite number of points where (xn − K)(xn+1 − K) < 0. In the first case,
the sequence is strictly increasing if xn0 < K and strictly decreasing if xn0 > K , thus it has a limit d = limn→∞ xn. Taking the
limit of both sides in (2.3) and using the continuity of g , we deduce that d is a positive fixed point of g , so d = K .

Consider the second case when there is an infinite number of points where xn − K changes its sign. Let us note that,
generally (unless some xn = K ) the sequence yn = |xn − K | is decreasing: if xn − K and xn+1 − K have the same sign, this
follows from (A2); if the signs are different, (2.2) implies yn+1 ≤ λyn. Since there is an infinite number of points nk, k ∈ N,
where (2.2) holds, we have

|xnk − K | = ynk ≤ λk|x0 − K |.
Thus limn→∞(xn − K) = 0, which completes the proof. �

Now we are in a position to prove our main result on global stabilization.

Theorem 2.2. If f satisfies (A1)–(A3), then there exists A ∈ (0, 1) such that for any α ∈ (A, 1), all solutions of (1.2)with initial
condition x0 > 0 converge to K .

Proof. Without loss of generality, we can assume that M ≥ 1, where M is defined in (2.1). Otherwise, by Lemma 2.1, the
positive equilibrium attracts all positive solutions of Eq. (1.1). Let us define A = A(M) = (M − 1)/M . We claim that the
conditions of Lemma 2.1 hold for g = Fα and all α ∈ (A, 1). It is easy to check that Fα meets (A1) and (A2). Note also that if
0 < x < K and 0 < f (x) < K then, for all α ∈ (0, 1),

0 < Fα(x) = αx + (1 − α)f (x) < αK + (1 − α)K = K .

Thus, (Fα(x) − K)(x − K) > 0.
The same argument is valid when x > K and f (x) > K . Hence, it is enough to consider the cases 0 < x < K , f (x) > K

and x > K , f (x) < K .
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First, let 0 < x < K and f (x) > K . Note that 0 < 1 − α < 1 − (M − 1)/M = 1/M and, by (2.1), f (x) − K ≤ M(K − x).
Thus,

Fα(x) − K = αx + (1 − α)f (x) − K = (1 − α)(f (x) − K) − α(K − x)

≤ 1
M

(f (x) − K) − α(K − x) ≤ 1
M

M(K − x) − α(K − x)

= (1 − α)(K − x).

This means that either Fα(x) < K or (2.2) holds with λ = 1 − α.
Next, the case x > K and f (x) < K is handled in a similar way. In this case, inequality (2.1) writes K − f (x) ≤ M(x − K),

and therefore

K − Fα(x) = K − αx − (1 − α)f (x) = (1 − α)(K − f (x)) − α(x − K)

≤ 1
M

(K − f (x)) − α(x − K) ≤ 1
M

M(x − K) − α(x − K)

= (1 − α)(x − K).

Thus, either Fα(x) > K or (2.2) holds with λ = 1 − α. The application of Lemma 2.1 completes the proof. �

Remark 1. If we choose Ã(M) = (M − β)/M instead of A(M) = (M − 1)/M in the proof of Theorem 2.2, then the same
conclusions are derived with λ = β − α instead of λ = 1 − α in (2.2). The only restrictions on β are 0 < β ≤ M and
β − Ã(M) ≤ 1. These conditions are equivalent to 0 < β ≤ 2M/(M + 1),M ≥ 1. Thus, our approach shows that, under
conditions (A1)–(A3), the positive equilibrium of Eq. (1.1) is globally stabilized with the PBC scheme (1.2) if the strength of
the parameter control α ∈ (0, 1) satisfies the inequality

α > α0(M) = M − (2M/(M + 1))
M

= M − 1
M + 1

.

Remark 2. It is easy to prove that Fα is monotone increasing on (0, K) if f is continuously differentiable on (0, K) and
f �(x) > −α/(1 − α) for all x ∈ (0, K), that is, if

α > α1 := max
x∈[0,K ],f �(x)<0

�
f �(x)

f �(x) − 1

�
. (2.5)

In this case, the convergence of any positive solution of (1.2) to K is eventually monotone. This result can be derived from
the proof of Theorem 1 in [8].

Example 2.3. Consider the difference equation

xn+1 = xn
�
0.55 + 3.45

1 + xmn

�
, (2.6)

which models the growth of bobwhite quail populations [18], and is chaotic form = 9. Since the map

f (x) = x
�
0.55 + 3.45

1 + x9

�

is bimodal, the results in [8] are not applicable. It is easy to verify that f satisfies (A1)–(A3) with M = 4.5622. Thus, the
control scheme (1.2) stabilizes (globally) the positive equilibrium K = 1.2346 of model (2.6) for all α ∈ (α0, 1), where

α0 = M − 1
M + 1

= 0.64043.

In view of Remark 2, convergence of any positive solution of the controlled equation to K is eventually monotone if
α > α1 ≈ 0.848101, where α1 is defined by (2.5).

2.2. Multistability

An interesting feature of the PBCmethod is that it allows to stabilize simultaneously several equilibria, in such away that
all positive solutions of the controlled equation (1.2) converge to one of the equilibrium points. We note that this situation
was not considered in previous papers on this control technique. In order to generalize the results of Section 2.1 to this
situation, we list the assumptions which we will use in this subsection:
(B1) f : [0, ∞) → [0, ∞) is continuous, f (0) = 0, and f (x) > 0 for all x > 0.
(B2) f has several nonnegative fixed points 0 = K0 < K1 < · · · < Kr , such that f (x) > x for 0 < x < K1, and f (x) < x for

x > Kr .
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(B3) There exists a numberM > 0 such that
����
f (x) − Kj

x − Kj

���� ≤ M, (2.7)

for any x > 0 and every j = 1, 2, . . . , r .

Similar to the single equilibrium case, condition (B3) is satisfied for continuously differentiable functions if (B1) and (B2)
hold.

To prove the main result of this section, we need the following auxiliary statement, which generalizes Lemma 2.1, and is
of independent interest. Let us note that on each interval (Kj, Kj+1), either f (x) > x or f (x) < x holds.

Lemma 2.4. Assume that f : [0, ∞) → [0, ∞) satisfies (B1), (B2), and let λ ∈ (0, 1) be a number such that for any x > 0 and
j ∈ {1, 2, . . . , r},

either
��f (x) − Kj

�� ≤ λ|x − Kj| or (f (x) − Kj)(x − Kj) > 0. (2.8)

Then any solution {xn} of Eq. (1.1)with x0 > 0 converges to a positive equilibrium, that is, there exists j ∈ {1, 2, . . . , r} such that

lim
n→∞

xn = Kj. (2.9)

Proof. Let us fix an x∗ > 0. We claim that if f (x∗) > x∗, then there exists ε > 0 such that for any x ∈ (x∗ − ε, x∗ + ε) and
n ≥ 1, we have

f n(x) > x∗ + ε. (2.10)

We prove this claim using induction in n. Denoting µ = f (x∗) − x∗, we can find ε < µ/2 such that x ∈ (x∗ − ε, x∗ + ε)
implies

f (x) ∈
�
f (x∗) − µ

2
, f (x∗) + µ

2

�
⊂

�
x∗ + ε, f (x∗) + µ

2

�
,

since f is continuous. This means that (2.10) holds for n = 1. Let Kj be the least fixed point exceeding x∗. Without loss of
generality, we can choose ε which also satisfies ε < Kj − x∗. Then, by (2.8), we can also claim that |f (x) − Kj| < |x − Kj|.

For n = 2, there may be two cases: f (f (x)) ≥ Kj and f (f (x)) < Kj. In the former case, (2.10) is obvious. In the latter case,
if x < f (x) < Kj, then f (f (x)) > f (x) > x∗ + ε; if f (x) > Kj, then by (2.8), we have

Kj − f (f (x)) ≤ λ(f (x) − Kj) ≤ λ(Kj − x∗ − ε),

which implies f (f (x)) ≥ (1 − λ)Kj + λ(x∗ + ε) ≥ (1 − λ)(x∗ + ε) + λ(x∗ + ε) = x∗ + ε.
For the next induction step, we assume that f n−1(x) > x∗ + ε and f n(x) > x∗ + ε, n ≥ 2. If x∗ < f n(x) ≤ Kj,

then f n+1 ≥ f n(x) > x∗ + ε. If f n(x) > Kj, then we can choose the maximal i such that Ki ≤ f n(x). Similar to the case
n = 2, we prove that f n+1(x) < Ki implies |Ki − f n−1(x)| ≥ f n(x) − Ki and Ki − f n+1(x) ≤ f n(x) − Ki ≤ Ki − f n−1(x), so
f n+1(x) ≥ f n−1(x) > x∗ + ε. The induction step completes the proof of (2.10).

It can be proved in a similar way that if f (x∗) < x∗, then there exists ε > 0 such that for any x ∈ (x∗ − ε, x∗ + ε) and
n ≥ 1, we have

f n(x) < x∗ − ε.

Now, we are in a position to prove (2.9). First, let us note that any solution {xn} is bounded. If M = maxx∈[0,Kr ] f (x), then for
any x > M + ε we have x > Kr , and so f (x) < x. Thus lim supn→∞ xn < M + ε, hence {xn} is bounded.

Any bounded sequence has at least one accumulation point. If the point is unique, this implies (2.9). Otherwise, we can
define the minimal accumulation point a and the maximal accumulation point b, that is,

a = lim inf
n→∞

xn; b = lim sup
n→∞

xn.

If f (a) < a, then a is not minimal, since, by (B1), f (a) is also an accumulation point. If f (a) > a, then by (2.10) there exists
ε > 0 such that for any x ∈ (a− ε, a+ ε) we have f n(x) > a+ ε, so a is not an accumulation point. Thus f (a) = a. A similar
argument leads to the conclusion f (b) = b. Thus, we can exclude from consideration the case when some xn coincides with
either a or b.

Next, there may be two cases: there exists xi ∈ (a, b) for some i or not. In the former case, if f (xi) > xi, then for some
ε > 0 we have xi+j > xi + ε, for all j ≥ 1, so a is not an accumulation point; if f (xi) < xi, then b is not an accumulation
point. In the latter case, for any ε there is n0 such that xn ∈ (a − ε, a) ∪ (b, b + ε), n ≥ n0. Without loss of generality, we
assume that ε < b − a. Let xk ∈ (b, b + ε) then f (xk) < a is impossible since in this case (f (xk) − a)(x − a) < 0 and

|f (xk) − b| = b − f (xk) > b − a > ε > xk − b,

so (2.8) fails. Thus a = b, which completes the proof. �



Author's personal copy

E. Braverman, E. Liz / Computers and Mathematics with Applications 64 (2012) 2192–2201 2197

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Fig. 1. Representation of the graph y = f (x), where f is defined in (2.11), and the line y = x. The five positive equilibria of xn+1 = f (xn) are given by the
intersections of these two curves for x > 0.

Theorem 2.5. Assume that f satisfies (B1)–(B3). Then there exists A ∈ (0, 1) such that for all α ∈ (A, 1), any solution {xn}
of (1.2) with x0 > 0 converges to one of the positive equilibria.

Proof. Let M be defined in (2.7). Without loss of generality, we can assume that M ≥ 1; otherwise, Eq. (1.2) immediately
satisfies the conditions of Lemma 2.4. Let us take β = 2M/(M + 1) and

A = M − β

M
= M − 1

M + 1
.

Arguing as in the proof of Theorem2.2, and having inmind Remark 1, it can be proved that function Fα satisfies the conditions
of Lemma 2.4 for all α ∈ (A, 1). �

Remark 3. Similar to Remark 2, if we assume that conditions (B1), (B2) hold, and f is piecewisemonotone and continuously
differentiable on (0, Kr), then it is not difficult to prove that the number

A1 := max
x∈[0,Kr ],f �(x)<0

�
f �(x)

f �(x) − 1

�

is well defined, and F �
α(x) ≥ 0 for all x ∈ [0, Kr ] if α ∈ [A1, 1). As a consequence, the convergence of any solution of (1.2)

with x0 > 0 to one of the positive equilibria of (1.1) is eventually monotone if α ≥ A1.

Example 2.6. Define

f1(x) = x (1 + 0.3 sin(πx) + 0.6 sin(5πx)) , f2(x) = f1(1.07)
1.07

xe1.07−x,

and

f (x) =
�
f1(x), if x ∈ [0, 1.07],
f2(x), if x > 1.07. (2.11)

A graphic representation of y = f (x) together with the line y = x is plotted in Fig. 1.
The difference equation xn+1 = f (xn) has 6 equilibria

0 = K0 < K1 < K2 < K3 < K4 < K5 = 1.

The only one stable is K1, and this attractor coexists with a chaotic attractor. See the bifurcation diagram in Fig. 2.
An application of Theorem 2.5 proves that all solutions of the controlled equation (1.2) converge to an equilibrium if

α > A = M − 1
M + 1

≈ 0.808348,

where M is defined in (2.7). Note that the three attracting equilibria are K1 ≈ 0.220708, K3 ≈ 0.630335, and K5 = 1. We
emphasize that the bound provided by Theorem 2.5 is quite sharp in this case because the value of the parameter α at which
F �
α(1) = −1, inducing a period-halving bifurcation at K5 = 1, is α1 ≈ 0.807085, which is very close to A. For values of α less
than α1, there is an attracting 2-periodic orbit of Fα , so convergence of all positive solutions to one of the equilibria is not
possible.

According to Remark 3, we can ensure that convergence of all positive solutions of (1.2) to one of the positive equilibria
is eventually monotone if

α ≥ A1 := max
x∈[0,1],f �(x)<0

�
f �(x)

f �(x) − 1

�
= f �(1)

f �(1) − 1
≈ 0.903542.
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Fig. 2. Bifurcation diagram for the controlled equation xn+1 = αxn + (1− α)f (xn), where f is defined in (2.11). A random initial condition was chosen for
each value of α ∈ (0, 1), in such a way that the three attracting equilibria can be seen in the bifurcation diagram for α > 0.807. The dashed lines represent
unstable equilibria. Note that K2 and K4 cannot be stabilized using (1.2) because f �(K2) > 0, f �(K4) > 0.

3. Pulse stabilization

In this section, we analyze the possibility of finding a range of values of the control parameter α that allow to stabilize a
positive equilibriumof (1.1) using the schemewith pulses (1.3). The first important remark is that, in general, it is impossible
to find a range of values of the parameter control that stabilize a positive equilibrium of (1.1) using CF or PF methods with
pulses. Assume, for example, that we want to stabilize a fixed point K > 0 using the PF method with pulses

xn+1 =
�
f (xn), if n �= mk,
f (γ xn), if n = mk, k ∈ Z+,

(3.1)

where γ ∈ R. In particular, K must be a fixed point both of f (x) and g(x) = f (γ x), that is, f (K) = K = f (γK). In general,
this equality only holds for a finite number of values of γ , unless f is constant over an interval.

If we consider the CF method, then, arguing as before, we arrive at the equality f (K) = K = f (K) + c , which is only
possible if c = 0.

The reasonwhy PBCmethod allows the possibility of pulse stabilization of equilibria is that the fixed points of the original
system are the same as the fixed points of the controlled equation. Before formulating the main result for the PBC method,
we recall that it is impossible to stabilize an unstable positive fixed point K of (1.1) if f �(K) > 1 using PBC with a value of
α ∈ [0, 1). Thus, we will assume that f �(K) < −1.

Theorem 3.1. Let K be an unstable equilibrium of (1.1). Assume that f is differentiable at K , and c1 := f �(K) < −1. Then K is
locally asymptotically stable for the pulse scheme (1.3) if

α ∈ Im =
�
cm1 − (−1)m

cm1 − cm−1
1

,
cm1 + (−1)m

cm1 − cm−1
1

�

. (3.2)

That is to say, in the following ranges of values of the parameter α:

(a) α ∈
�

cm1 +1

cm1 −cm−1
1

,
cm1 −1

cm1 −cm−1
1

�
, if m is odd.

(b) α ∈
�

cm1 −1

cm1 −cm−1
1

,
cm1 +1

cm1 −cm−1
1

�
, if m is even.

Proof. We prove the case when m is odd. The arguments for the other case are analogous. The control scheme with pulses
(1.3) can be seen as an m-periodic difference equation, so the stability properties of the equilibrium x = K depend on the
derivative at K of the period map

Fm,α(x) = f m−1(Fα(x)) = f m(x) − α(f m(x) − f m−1(x)).

The fixed point K is asymptotically stable if |F �
m,α(K)| < 1, and unstable if |F �

m,α(K)| > 1. See, e.g., [19] and references
therein.

Note that

F �
m,α(K) = cm1 − α(cm1 − cm−1

1 ).

Sincem is odd and c1 < −1, it follows that F �
m,α(K) is an increasing function of α. This means that K is asymptotically stable

for α ∈ (α1, α2), where α1, α2 solve

cm1 − α1(cm1 − cm−1
1 ) = −1; cm1 − α2(cm1 − cm−1

1 ) = 1.
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Fig. 3. Bifurcation diagram for the controlled equation by pulses withm = 2. The dashed lines correspond to unstable equilibria. There are three positive
equilibria of (3.5) for α < α∗ ≈ 0.5395, and only one after α∗ . The fixed point K = 1 of f becomes stable after a transcritical bifurcation at α = 0.5, and
becomes unstable again after a period-doubling bifurcation at α = 0.833. K = 1 seems to be globally stable between α∗ and α∗∗ ≈ 0.80419, where an
attracting 2-periodic orbit is born in a saddle–node bifurcation.

Hence we get

α1 = cm1 + 1
cm1 − cm−1

1
; α2 = cm1 − 1

cm1 − cm−1
1

. �

Some remarks are in order. First, it is easy to check that Im+1 ⊂ Im for all m ≥ 1. This means that the interval of
stabilization becomes smaller as the intervention period increases. Note that the larger interval is attained for m = 1,
that is, the control without pulses (1.2), and it is

I1 =
�
c1 + 1
c1 − 1

, 1
�

. (3.3)

On the other hand, the length of Im tends to zero asm tends to infinity, and the only point in the intersection of all intervals
Im is

α# = c1
c1 − 1

.

It is easy to check that F �
m,α#(K) = 0 for allm ≥ 1, which means that the fixed point K is superstable for the control scheme

(1.3) regardless of the value ofm.
From theproof of Theorem3.1, it follows that,whenm is odd, the fixedpointK is stabilized at a period-halving bifurcation,

when f �(K) = −1, and it is destabilized again after a tangent (transcritical) bifurcation, when f �(K) = 1. For even m,
the situation is reversed: the tangent bifurcation is stabilizing, and the equilibrium is destabilized in a period-doubling
bifurcation (which can be either supercritical or subcritical).

Another important observation is that, while in Section 2, we have proved that global stabilization is possible using the
PBC method (1.2) under some mild assumptions on function f , the same conclusion does not hold in general for the pulse
scheme (1.3)withm > 1.We give an example using the Rickermap usually employed in population dynamics (see, e.g, [20])

f (x) = x e3(1−x). (3.4)

It is well known that Eq. (1.1) with this function f is chaotic [21]. In [8], it was proved that the positive equilibrium K = 1
is locally (and globally) stable for the controlled equation (1.2) if α ∈ (1/3, 1). Note that c1 = f �(1) = −2, so this interval
is exactly interval I1 defined in (3.3).

An application of Theorem 3.1 with m = 2, that is, the control is implemented every two periods, shows that the
equilibrium K = 1 is stabilized for

α ∈ I2 =
�

c21 − 1
c21 − c1

,
c21 + 1
c21 − c1

�
= (1/2, 5/6) ≈ (0.5, 0.8333).

Numerical simulations suggest that the equilibrium is actually globally asymptotically stable for α in a subinterval J2 =
(0.5395, 0.80419) of I2. See the bifurcation diagram in Fig. 3, where a random initial condition was chosen for the scheme

xn+1 =
�
xn e3(1−xn), if n �= 2k,
αxn + (1 − α)xn e3(1−xn), if n = 2k, k ∈ Z+,

(3.5)

with α ∈ (0, 1).
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Fig. 4. Bifurcation diagram for the controlled equation by pulses with m = 3. The dashed lines correspond to unstable equilibria. The fixed point K = 1
of f becomes stable after a period-doubling bifurcation at α = 0.5833, and becomes unstable again after a transcritical bifurcation at α = 0.75. K = 1 is
not globally stable for any value of α.

The strategy of pulse control using the PBC method (1.3) with m = 3 stabilizes the positive equilibrium K = 1 of the
Ricker map (3.4) for

α ∈ I3 =
�

c31 + 1
c31 − c21

,
c31 − 1
c31 − c21

�
= (7/12, 9/12) ≈ (0.5833, 0.75).

The bifurcation diagram shown in Fig. 4 suggests that in this case K = 1 does not become globally stable for any value
of α.

4. Discussion

Themethod of predictive control (1.2), first introduced by de Sousa Vieira and Lichtenberg [9], is able to stabilize unstable
equilibria of a chaotic system using a control which depends on the difference between the current state value xn of a
difference Eq. (1.1) and the value f (xn), which can be considered as a prediction of the next step xn+1. Although it was
already emphasized in [9] that this method is robust against noise, due to the large basis of attraction of the stabilized
equilibrium, the first analytical result on global stabilization of fixed points using PBC was recently proved in [8]. In the
present paper, we generalized the main result in [8] to a wide class of difference equations of the form (1.1), even without
requiring differentiability of themap f governing the associated discrete dynamical system.When there is a unique positive
equilibrium of (1.1), the PBC method stabilizes the system about the original equilibrium of the system, which in models
of population dynamics usually means the so-called carrying capacity. This fact makes an important difference with other
control methods such as constant feedback (CF) and proportional feedback (PF). In addition, persistence of the population
is kept after control, avoiding such undesired consequences as the Allee effect and catastrophe bifurcations [5,12,13]. In
some systems, there may be several positive equilibria. In this case, we proved that a PBC scheme is able to induce a
simple dynamics into a chaotic system, in such a way that all positive solutions converge to one of the equilibria of the
system.

Next, in many situations it is very difficult and expensive to apply control at every step. Thus, a strategy of pulse (or
periodic) control is necessary; for example, a seasonal intervention in population dynamics. With this motivation in mind,
we introduced a strategy of pulse PBC defined by the scheme (1.3), and we have demonstrated that this method is able to
stabilize an unstable equilibrium of the original system (1.1). This feature is in contrast with CF and PF methods, in which
it is only possible to stabilize orbits of period greater than one if a pulse strategy is used. Our results show that the range
of parameters α for which stabilization is achieved using the method (1.3) decreases as the period between interventions
increases, and the property of global stabilization is lost because new equilibria and periodic orbits appear; thus, themethod
is less robust against noise than the usual PBC method. In any case, even if there is multistability, the risk of extinction is
prevented if the values of the control parameter α are restricted to the interval (0, 1).

Natural directions for future research are the generalization of our results to systems of difference equations, and to
the stabilization of periodic orbits of period greater than one. On the other hand, we note that some generalizations of the
delayed feedback control method introduced by Pyragas [16] have been applied using periodic interventions or pulses (also
called oscillating feedback) [22,23]. It would be interesting to compare these methods with the pulse PBC scheme introduced
in this paper.
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